Skip to content

BUG: NaT in Timestamp ignored by sort_values with na_position='last' #17138

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
mficek opened this issue Aug 1, 2017 · 1 comment
Closed

BUG: NaT in Timestamp ignored by sort_values with na_position='last' #17138

mficek opened this issue Aug 1, 2017 · 1 comment
Labels
Datetime Datetime data dtype Testing pandas testing functions or related to the test suite

Comments

@mficek
Copy link

mficek commented Aug 1, 2017

Code Sample, a copy-pastable example if possible

This is an excerpt from tests/frame/test_sorting.py:

from pandas import (DataFrame, Timestamp, NaT)
from pandas.util.testing import assert_frame_equal

# test_sort_nat_values_in_int_column(self):
# GH 14922: "sorting with large float and multiple columns incorrect"

float_values = (2.0, -1.797693e308)
# and now check if NaT is still considered as "na" for datetime64
# columns:
df = DataFrame(dict(datetime=[Timestamp("2016-01-01"), NaT],
                    float=float_values), columns=["datetime", "float"])

df_reversed = DataFrame(dict(datetime=[NaT, Timestamp("2016-01-01")],
                             float=float_values[::-1]),
                        columns=["datetime", "float"],
                        index=[1, 0])

df_sorted = df.sort_values(["datetime", "float"], na_position="first")
assert_frame_equal(df_sorted, df_reversed)

df_sorted = df.sort_values(["datetime", "float"], na_position="last")
assert_frame_equal(df_sorted, df_reversed)

Output

Traceback (most recent call last):
  File "/home/mficek/repos/pandas-mficek/pandas/tests/frame/bugreport.py", line 24, in <module>
    assert_frame_equal(df_sorted, df_reversed)
  File "/home/mficek/repos/pandas-mficek/pandas/util/testing.py", line 1363, in assert_frame_equal
    obj='{0}.index'.format(obj))
  File "/home/mficek/repos/pandas-mficek/pandas/util/testing.py", line 939, in assert_index_equal
    obj=obj, lobj=left, robj=right)
  File "pandas/_libs/testing.pyx", line 59, in pandas._libs.testing.assert_almost_equal
  File "pandas/_libs/testing.pyx", line 173, in pandas._libs.testing.assert_almost_equal
  File "/home/mficek/repos/pandas-mficek/pandas/util/testing.py", line 1102, in raise_assert_detail
    raise AssertionError(msg)
AssertionError: DataFrame.index are different

DataFrame.index values are different (100.0 %)
[left]:  Int64Index([0, 1], dtype='int64')
[right]: Int64Index([1, 0], dtype='int64')

Problem description

I'm working on #17111 trying to change sorting algorithm for better performance. I noticed that in tests sorting with NaT, interpreted as int, should ignore na_position argument in sort_values function. But not for datetime64 type, which should consider NaT as not-a-number value.

Therefore the output above is "expected" for me, because I think sort_values simply does not consider NaT in datetime64 type as nan.

In my opinion, there should be the following change in the test suite:

df_sorted = df.sort_values(["datetime", "float"], na_position="last")
assert_frame_equal(df_sorted, df)

which however means, that version 0.20.3 wouldn't pass.

Am I wrong? Do I miss something here, please?

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 2.7.13.final.0
python-bits: 64
OS: Linux
OS-release: 4.4.0-87-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: None.None

pandas: 0.20.3
pytest: 3.1.3
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.13.1
scipy: None
xarray: None
IPython: 5.4.1
sphinx: None
patsy: None
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: 3.3.0
numexpr: 2.6.2
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
pandas_gbq: None
pandas_datareader: None

@gfyoung gfyoung added Datetime Datetime data dtype Testing pandas testing functions or related to the test suite labels Aug 1, 2017
@mficek
Copy link
Author

mficek commented Aug 1, 2017

Hm... after some effort I accidentally found this behaviour to be a bug already issued: #16995

@mficek mficek closed this as completed Aug 1, 2017
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Datetime Datetime data dtype Testing pandas testing functions or related to the test suite
Projects
None yet
Development

No branches or pull requests

2 participants