-
-
Notifications
You must be signed in to change notification settings - Fork 18.9k
Description
Edit (#40695 (comment)): This issue is about groupby(...).transform
not accepting list-likes or dict-likes.
Code Sample, a copy-pastable example
In [1]: import pandas as pd
In [2]: pdf = pd.DataFrame({'a' : [2, 2, 1, 1, 6], 'b' : [2, 2, 1, 1, 3]})
In [3]: pdf.groupby('a').agg(['sum'])
Out[3]:
b
sum
a
1 2
2 4
6 3
In [4]: pdf.groupby('a').agg(['cumsum'])
Out[4]:
b
cumsum
0 2
1 4
2 1
3 2
4 3
In [5]: pdf.groupby('a').agg(['cumsum', 'sum'])
Out[5]:
b
cumsum sum
0 2.0 NaN
1 4.0 2.0
2 1.0 4.0
3 2.0 NaN
4 3.0 NaN
6 NaN 3.0
Problem description
When both scan aggregrations (cumsum, cummin, cummax, cumcount) and any of reduction aggregartions (sum, min, max, prod, ...), are passed to groupby.agg
, output value mapping to index in the result is wrong.
scan aggregations produce index as RangeIndex (0 to N-1).
reduction aggregations usually map to grouped keys. In the given example, it maps to values of keys in resulting index.
Expected Output
Common method to align the output should be decided and implemented.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : f2c8480
python : 3.7.10.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-137-generic
Version : #141-Ubuntu SMP Fri Feb 19 13:46:27 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.3
numpy : 1.19.2
pytz : 2020.4
dateutil : 2.8.1
pip : 21.0.1
setuptools : 49.6.0.post20201009
Cython : 0.29.22
pytest : 6.2.2
hypothesis : 6.8.1
sphinx : 3.5.3
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.21.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : None
fsspec : 0.8.7
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.0.1
pyxlsb : None
s3fs : None
scipy : 1.6.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : 0.52.0