Skip to content

CLN: deprivatize factorize_from_iterable #29377

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions pandas/core/arrays/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -2678,7 +2678,7 @@ def _convert_to_list_like(list_like):
return [list_like]


def _factorize_from_iterable(values):
def factorize_from_iterable(values):
"""
Factorize an input `values` into `categories` and `codes`. Preserves
categorical dtype in `categories`.
Expand Down Expand Up @@ -2716,9 +2716,9 @@ def _factorize_from_iterable(values):
return codes, categories


def _factorize_from_iterables(iterables):
def factorize_from_iterables(iterables):
"""
A higher-level wrapper over `_factorize_from_iterable`.
A higher-level wrapper over `factorize_from_iterable`.

*This is an internal function*

Expand All @@ -2733,9 +2733,9 @@ def _factorize_from_iterables(iterables):

Notes
-----
See `_factorize_from_iterable` for more info.
See `factorize_from_iterable` for more info.
"""
if len(iterables) == 0:
# For consistency, it should return a list of 2 lists.
return [[], []]
return map(list, zip(*(_factorize_from_iterable(it) for it in iterables)))
return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))
6 changes: 3 additions & 3 deletions pandas/core/indexes/multi.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@

import pandas.core.algorithms as algos
from pandas.core.arrays import Categorical
from pandas.core.arrays.categorical import _factorize_from_iterables
from pandas.core.arrays.categorical import factorize_from_iterables
import pandas.core.common as com
import pandas.core.indexes.base as ibase
from pandas.core.indexes.base import (
Expand Down Expand Up @@ -440,7 +440,7 @@ def from_arrays(cls, arrays, sortorder=None, names=_no_default_names):
if len(arrays[i]) != len(arrays[i - 1]):
raise ValueError("all arrays must be same length")

codes, levels = _factorize_from_iterables(arrays)
codes, levels = factorize_from_iterables(arrays)
if names is _no_default_names:
names = [getattr(arr, "name", None) for arr in arrays]

Expand Down Expand Up @@ -562,7 +562,7 @@ def from_product(cls, iterables, sortorder=None, names=_no_default_names):
elif is_iterator(iterables):
iterables = list(iterables)

codes, levels = _factorize_from_iterables(iterables)
codes, levels = factorize_from_iterables(iterables)
if names is _no_default_names:
names = [getattr(it, "name", None) for it in iterables]

Expand Down
8 changes: 4 additions & 4 deletions pandas/core/reshape/concat.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,8 @@

from pandas import DataFrame, Index, MultiIndex, Series
from pandas.core.arrays.categorical import (
_factorize_from_iterable,
_factorize_from_iterables,
factorize_from_iterable,
factorize_from_iterables,
)
import pandas.core.common as com
from pandas.core.generic import NDFrame
Expand Down Expand Up @@ -604,7 +604,7 @@ def _make_concat_multiindex(indexes, keys, levels=None, names=None):
names = [None] * len(zipped)

if levels is None:
_, levels = _factorize_from_iterables(zipped)
_, levels = factorize_from_iterables(zipped)
else:
levels = [ensure_index(x) for x in levels]
else:
Expand Down Expand Up @@ -645,7 +645,7 @@ def _make_concat_multiindex(indexes, keys, levels=None, names=None):
levels.extend(concat_index.levels)
codes_list.extend(concat_index.codes)
else:
codes, categories = _factorize_from_iterable(concat_index)
codes, categories = factorize_from_iterable(concat_index)
levels.append(categories)
codes_list.append(codes)

Expand Down
8 changes: 4 additions & 4 deletions pandas/core/reshape/reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@

import pandas.core.algorithms as algos
from pandas.core.arrays import SparseArray
from pandas.core.arrays.categorical import _factorize_from_iterable
from pandas.core.arrays.categorical import factorize_from_iterable
from pandas.core.construction import extract_array
from pandas.core.frame import DataFrame
from pandas.core.index import Index, MultiIndex
Expand Down Expand Up @@ -504,7 +504,7 @@ def stack(frame, level=-1, dropna=True):
def factorize(index):
if index.is_unique:
return index, np.arange(len(index))
codes, categories = _factorize_from_iterable(index)
codes, categories = factorize_from_iterable(index)
return categories, codes

N, K = frame.shape
Expand Down Expand Up @@ -725,7 +725,7 @@ def _convert_level_number(level_num, columns):
new_names = list(this.index.names)
new_codes = [lab.repeat(levsize) for lab in this.index.codes]
else:
old_codes, old_levels = _factorize_from_iterable(this.index)
old_codes, old_levels = factorize_from_iterable(this.index)
new_levels = [old_levels]
new_codes = [old_codes.repeat(levsize)]
new_names = [this.index.name] # something better?
Expand Down Expand Up @@ -949,7 +949,7 @@ def _get_dummies_1d(
from pandas.core.reshape.concat import concat

# Series avoids inconsistent NaN handling
codes, levels = _factorize_from_iterable(Series(data))
codes, levels = factorize_from_iterable(Series(data))

if dtype is None:
dtype = np.uint8
Expand Down