-
Notifications
You must be signed in to change notification settings - Fork 110
Closed
Description
this is on 32-bit linux
on 64-bit the the int dtypes work correctly
stems from here
numpy/numpy#4638
pandas-dev/pandas#6915
workaround with numpy is to do arithmetic in highest dtype, e.g. values.sum(dtype='float64')
then cast back
>>> import numpy as np
>>> import bottleneck as bn
>>> bn.__version__
'0.8.0'
>>> np.__version__
'1.8.1'
>>> float(bn.nansum(np.arange(5000000,dtype='float32')))
12499997949952.0
>>> float(bn.nansum(np.arange(5000000,dtype='float64')))
12499997500000.0
>>> int(bn.nansum(np.arange(5000000,dtype='int32')))
1642668640
>>> int(bn.nansum(np.arange(5000000,dtype='int64')))
12499997500000L
Metadata
Metadata
Assignees
Labels
No labels