-
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Closed
Labels
Description
What happened?
As noted in #9977 (comment), taking the mean of a np.datetime64
array with values that span more than half of the resolution-dependent range produces the incorrect result, e.g.:
>>> import numpy as np; import xarray as xr
>>> array = np.array(["1678-01-01", "2260-01-01"], dtype="datetime64[ns]")
>>> times = xr.DataArray(array, dims=["time"])
>>> times.mean()
<xarray.DataArray ()> Size: 8B
array('2261-04-11T23:47:16.854775808', dtype='datetime64[ns]')
This is due to overflow when computing the timedeltas relative to the minimum datetime value of the array (code).
What did you expect to happen?
This is the outcome we would expect to see in this example:
>>> times.mean()
<xarray.DataArray ()> Size: 8B
array('1969-01-01T00:00:00.000000000', dtype='datetime64[ns]')
Minimal Complete Verifiable Example
>>> import numpy as np; import xarray as xr
>>> array = np.array(["1678-01-01", "2260-01-01"], dtype="datetime64[ns]")
>>> times = xr.DataArray(array, dims=["time"])
>>> times.mean()
<xarray.DataArray ()> Size: 8B
array('2261-04-11T23:47:16.854775808', dtype='datetime64[ns]')
MVCE confirmation
- Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
- Complete example — the example is self-contained, including all data and the text of any traceback.
- Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
- New issue — a search of GitHub Issues suggests this is not a duplicate.
- Recent environment — the issue occurs with the latest version of xarray and its dependencies.
Relevant log output
Anything else we need to know?
No response
Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.12.8 | packaged by conda-forge | (main, Dec 5 2024, 14:25:12) [Clang 18.1.8 ]
python-bits: 64
OS: Darwin
OS-release: 24.0.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.14.4
libnetcdf: 4.9.2
xarray: 2024.6.1.dev516+gf6716dc2.d20250112
pandas: 2.2.3
numpy: 2.0.2
scipy: 1.14.1
netCDF4: 1.7.2
pydap: None
h5netcdf: 1.4.1
h5py: 3.12.1
zarr: 2.18.4
cftime: 1.6.4
nc_time_axis: None
iris: 3.11.0
bottleneck: 1.4.2
dask: 2024.12.1
distributed: 2024.12.1
matplotlib: 3.10.0
cartopy: 0.24.0
seaborn: 0.13.2
numbagg: None
fsspec: 2024.12.0
cupy: None
pint: None
sparse: 0.15.4
flox: None
numpy_groupies: None
setuptools: 75.6.0
pip: 24.3.1
conda: None
pytest: 8.3.4
mypy: 1.13.0
IPython: 8.31.0
sphinx: 6.2.1