-
Notifications
You must be signed in to change notification settings - Fork 69
Labels
bugSomething isn't workingSomething isn't working
Description
There is a bug in extract_components_from_idata
when working with multivariate time series. The following model will show it:
ll = pmss.structural.LevelTrendComponent(
name="trend", order=2, innovations_order=[0, 1], observed_state_names=presidents # list of 5 names for 5 multivar TS
)
ar = pmss.structural.AutoregressiveComponent(name="ar", order=1, observed_state_names=presidents)
noise = pmss.structural.MeasurementError(name="noise", observed_state_names=presidents)
structural_mod = (ll + ar + noise).build()
Once fitted, post_pred = structural_mod.sample_conditional_posterior(idata)
returns 15 hidden states, as it should:
array(['level[chirac2]', 'trend[chirac2]', 'level[sarkozy]', 'trend[sarkozy]',
'level[hollande]', 'trend[hollande]', 'level[macron]', 'trend[macron]',
'level[macron2]', 'trend[macron2]', 'L1[chirac2]', 'L1[sarkozy]',
'L1[hollande]', 'L1[macron]', 'L1[macron2]'], dtype='<U15')
but then, structural_mod.extract_components_from_idata(post_pred)
only returns one AR instead of 5:
array(['trend[level[chirac2]]', 'trend[trend[chirac2]]',
'trend[level[sarkozy]]', 'trend[trend[sarkozy]]',
'trend[level[hollande]]', 'trend[trend[hollande]]',
'trend[level[macron]]', 'trend[trend[macron]]', 'trend[level[macron2]]',
'trend[trend[macron2]]', 'ar'], dtype='<U22')
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working