You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
PyMC now relies on the spawn() method from numpy.random._generator.Generator. But this is a relatively recent addition to numpy (added in v1.25). So we need to set a lower limit on the numpy dependency.
Reproduceable code example:
importpymcaspmwithpm.Model() asmodel:
a=pm.Normal("a")
obs=pm.Normal("obs", a, 1, observed=[1,2])
idata=pm.sample()
Error message:
```shell
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Input In [7], in ()
7 a = pm.Normal("a")
8 obs = pm.Normal("obs", a, 1, observed=[1,2])
----> 9 idata = pm.sample()
11 print(az.summary(idata))
File ~/mambaforge/envs/pymc/lib/python3.10/site-packages/pymc/sampling/mcmc.py:733, in sample(draws, tune, chains, cores, random
_seed, progressbar, progressbar_theme, step, var_names, nuts_sampler, initvals, init, jitter_max_retries, n_init, trace, discard
_tuned_samples, compute_convergence_checks, keep_warning_stat, return_inferencedata, idata_kwargs, nuts_sampler_kwargs, callback
, mp_ctx, blas_cores, model, compile_kwargs, **kwargs)
731 if random_seed == -1:
732 random_seed = None
--> 733 rngs = get_random_generator(random_seed).spawn(chains)
734 random_seed_list = [rng.integers(2**30) for rng in rngs]
736 if not discard_tuned_samples and not return_inferencedata:
AttributeError: 'numpy.random._generator.Generator' object has no attribute 'spawn'
```
PyMC version information:
# packages in environment at /home/xian/mambaforge/envs/pymc:
#
# Name Version Build Channel
numpy 1.24.2 py310h8deb116_0 conda-forge
pymc 5.19.0 hd8ed1ab_0 conda-forge
pymc-base 5.19.0 pyhd8ed1ab_0 conda-forge
pytensor 2.26.4 py310ha549d7f_0 conda-forge
pytensor-base 2.26.4 py310h89e8f5a_0 conda-forge
The text was updated successfully, but these errors were encountered:
Describe the issue:
PyMC now relies on the
spawn()
method fromnumpy.random._generator.Generator
. But this is a relatively recent addition to numpy (added in v1.25). So we need to set a lower limit on the numpy dependency.Reproduceable code example:
Error message:
PyMC version information:
The text was updated successfully, but these errors were encountered: