Skip to content

refactor variational module, add histogram approximation #1904

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Mar 17, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 67 additions & 9 deletions pymc3/tests/test_variational_inference.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,16 @@
from six.moves import cPickle as pickle
import pickle
import unittest
import numpy as np
from theano import theano, tensor as tt
import pymc3 as pm
from pymc3 import Model, Normal
from pymc3.variational.inference import (
KL, MeanField, ADVI, FullRankADVI,
from pymc3.variational import (
ADVI, FullRankADVI,
Histogram,
fit
)
from pymc3.variational.operators import KL
from pymc3.variational.approximations import MeanField

from pymc3.tests import models
from pymc3.tests.helpers import SeededTest
Expand Down Expand Up @@ -186,7 +189,7 @@ def cb(*_):
mu_ = Normal('mu', mu=mu0, sd=sd0, testval=0)
Normal('x', mu=mu_, sd=sd, observed=data_t, total_size=n)
inf = self.inference()
approx = inf.fit(self.NITER, callbacks=[cb])
approx = inf.fit(self.NITER, callbacks=[cb], obj_n_mc=10)
trace = approx.sample_vp(10000)
np.testing.assert_allclose(np.mean(trace['mu']), mu_post, rtol=0.4)
np.testing.assert_allclose(np.std(trace['mu']), np.sqrt(1. / d), rtol=0.4)
Expand All @@ -199,22 +202,34 @@ def test_pickling(self):
inference.fit(20)

def test_aevb(self):
_, model, _ = models.exponential_beta()
_, model, _ = models.exponential_beta(n=2)
x = model.x
y = model.y
mu = theano.shared(x.init_value) * 2
sd = theano.shared(x.init_value) * 3
rho = theano.shared(np.zeros_like(x.init_value))
with model:
inference = self.inference(local_rv={y: (mu, sd)})
inference.fit(3)
inference = self.inference(local_rv={y: (mu, rho)})
approx = inference.fit(3, obj_n_mc=2)
approx.sample_vp(10)
approx.apply_replacements(
y,
more_replacements={x: np.asarray([1, 1], dtype=x.dtype)}
).eval()

def test_profile(self):
with models.multidimensional_model()[1]:
self.inference().run_profiling(10)


class TestMeanField(TestApproximates.Base):
inference = ADVI

def test_approximate(self):
with models.multidimensional_model()[1]:
fit(10, method='advi')
meth = ADVI()
fit(10, method=meth)
self.assertRaises(KeyError, fit, 10, method='undefined')
self.assertRaises(TypeError, fit, 10, method=1)


class TestFullRank(TestApproximates.Base):
Expand All @@ -234,11 +249,54 @@ def test_from_advi(self):

def test_combined(self):
with models.multidimensional_model()[1]:
self.assertRaises(ValueError, fit, 10, method='advi->fullrank_advi', frac=1)
fit(10, method='advi->fullrank_advi', frac=.5)

def test_approximate(self):
with models.multidimensional_model()[1]:
fit(10, method='fullrank_advi')


class TestHistogram(SeededTest):
def test_sampling(self):
with models.multidimensional_model()[1]:
full_rank = FullRankADVI()
approx = full_rank.fit(20)
trace0 = approx.sample_vp(10000)
histogram = Histogram(trace0)
trace1 = histogram.sample_vp(100000)
np.testing.assert_allclose(trace0['x'].mean(0), trace1['x'].mean(0), atol=0.01)
np.testing.assert_allclose(trace0['x'].var(0), trace1['x'].var(0), atol=0.01)

def test_aevb_histogram(self):
_, model, _ = models.exponential_beta(n=2)
x = model.x
mu = theano.shared(x.init_value)
rho = theano.shared(np.zeros_like(x.init_value))
with model:
inference = ADVI(local_rv={x: (mu, rho)})
approx = inference.approx
trace0 = approx.sample_vp(1000)
histogram = Histogram(trace0, local_rv={x: (mu, rho)})
trace1 = histogram.sample_vp(10000)
histogram.random(no_rand=True)
histogram.random_fn(no_rand=True)
np.testing.assert_allclose(trace0['y'].mean(0), trace1['y'].mean(0), atol=0.02)
np.testing.assert_allclose(trace0['y'].var(0), trace1['y'].var(0), atol=0.02)
np.testing.assert_allclose(trace0['x'].mean(0), trace1['x'].mean(0), atol=0.02)
np.testing.assert_allclose(trace0['x'].var(0), trace1['x'].var(0), atol=0.02)

def test_random(self):
with models.multidimensional_model()[1]:
full_rank = FullRankADVI()
approx = full_rank.approx
trace0 = approx.sample_vp(10000)
histogram = Histogram(trace0)
histogram.randidx(None).eval()
histogram.randidx(1).eval()
histogram.random_fn(no_rand=True)
histogram.random_fn(no_rand=False)
histogram.histogram_logp.eval()

if __name__ == '__main__':
unittest.main()
4 changes: 4 additions & 0 deletions pymc3/variational/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,3 +23,7 @@
FullRankADVI,
fit,
)
from .approximations import Histogram

from . import approximations
from . import operators
Loading