Skip to content

Add redirects from old v3 notebooks #6719

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,8 +158,115 @@
}
myst_heading_anchors = None

v3_example_tutorials = [
"case_studies/BEST",
"case_studies/LKJ",
"case_studies/stochastic_volatility",
"case_studies/rugby_analytics",
"case_studies/multilevel_modeling",
"case_studies/putting_workflow",
"case_studies/moderation_analysis",
"case_studies/mediation_analysis",
"case_studies/bayesian_ab_testing",
"case_studies/item_response_nba",
"diagnostics_and_criticism/Diagnosing_biased_Inference_with_Divergences",
"diagnostics_and_criticism/Bayes_factor",
"generalized_linear_models/GLM-logistic",
"generalized_linear_models/GLM-binomial-regression",
"generalized_linear_models/GLM-hierarchical-binominal-model",
"generalized_linear_models/GLM-hierarchical",
"case_studies/hierarchical_partial_pooling",
"generalized_linear_models/GLM-model-selection",
"generalized_linear_models/GLM-negative-binomial-regression",
"generalized_linear_models/GLM-out-of-sample-predictions",
"generalized_linear_models/GLM-poisson-regression",
"generalized_linear_models/GLM-robust-with-outlier-detection",
"generalized_linear_models/GLM-robust",
"generalized_linear_models/GLM-rolling-regression",
"generalized_linear_models/GLM-truncated-censored-regression",
"generalized_linear_models/GLM-simpsons-paradox",
"gaussian_processes/GP-Kron",
"gaussian_processes/GP-Latent",
"gaussian_processes/GP-Marginal",
"gaussian_processes/GP-MaunaLoa",
"gaussian_processes/GP-MaunaLoa2",
"gaussian_processes/GP-MeansAndCovs",
"gaussian_processes/GP-SparseApprox",
"gaussian_processes/GP-TProcess",
"gaussian_processes/GP-smoothing",
"gaussian_processes/GP-Heteroskedastic",
"gaussian_processes/gaussian_process",
"case_studies/conditional-autoregressive-model",
"case_studies/log-gaussian-cox-process",
"gaussian_processes/GP-Circular",
"mixture_models/dependent_density_regression",
"mixture_models/dp_mix",
"variational_inference/gaussian-mixture-model-advi",
"mixture_models/gaussian_mixture_model",
"mixture_models/marginalized_gaussian_mixture_model",
"mixture_models/dirichlet_mixture_of_multinomials",
"samplers/SMC2_gaussians",
"samplers/SMC-ABC_Lotka-Volterra_example",
"survival_analysis/bayes_param_survival_pymc3",
"survival_analysis/censored_data",
"survival_analysis/survival_analysis",
"survival_analysis/weibull_aft",
"survival_analysis/cox_model",
"time_series/MvGaussianRandomWalk_demo",
"time_series/AR",
"time_series/Euler-Maruyama_and_SDEs",
"time_series/Air_passengers-Prophet_with_Bayesian_workflow",
"variational_inference/bayesian_neural_network_advi",
"variational_inference/convolutional_vae_keras_advi",
"variational_inference/empirical-approx-overview",
"variational_inference/lda-advi-aevb",
"variational_inference/normalizing_flows_overview",
"variational_inference/gaussian-mixture-model-advi",
"variational_inference/GLM-hierarchical-advi-minibatch",
"ode_models/ODE_with_manual_gradients",
"ode_models/ODE_API_introduction",
"case_studies/probabilistic_matrix_factorization",
"pymc3_howto/sampling_conjugate_step",
"samplers/MLDA_introduction",
"samplers/MLDA_simple_linear_regression",
"samplers/MLDA_gravity_surveying",
"samplers/MLDA_variance_reduction_linear_regression",
"samplers/GLM-hierarchical-jax",
"pymc3_howto/api_quickstart",
"variational_inference/variational_api_quickstart",
"Probability_Distributions.rst",
"pymc3_howto/data_container",
"pymc3_howto/sampling_compound_step",
"pymc3_howto/sampling_callback",
"diagnostics_and_criticism/sampler-stats",
"diagnostics_and_criticism/Diagnosing_biased_Inference_with_Divergences",
"Advanced_usage_of_Theano_in_PyMC3.rst",
"ode_models/ODE_API_shapes_and_benchmarking",
"samplers/DEMetropolisZ_EfficiencyComparison",
"samplers/DEMetropolisZ_tune_drop_fraction",
"case_studies/factor_analysis",
"case_studies/blackbox_external_likelihood",
"pymc3_howto/profiling",
"pymc3_howto/howto_debugging",
"diagnostics_and_criticism/model_averaging",
"pymc3_howto/updating_priors",
"pymc3_howto/lasso_block_update",
"nb_examples/index.html",
"nb_tutorials/index.html",
]
rediraffe_redirects = {
"index.md": "learn.md",
"pymc-examples/examples/getting_started.md": "learn/core_notebooks/pymc_overview.ipynb",
"pymc-examples/examples/PyMC3_and_Theano.rst": "learn/core_notebooks/pymc_pytensor.ipynb",
"pymc-examples/examples/generalized_linear_models/GLM.ipynb": "learn/core_notebooks/GLM_linear.ipynb",
"pymc-examples/examples/generalized_linear_models/GLM-linear.ipynb": "learn/core_notebooks/GLM_linear.ipynb",
"pymc-examples/examples/diagnostics_and_criticism/model_comparison.ipynb": "learn/core_notebooks/model_comparison.ipynb",
"pymc-examples/examples/diagnostics_and_criticism/posterior_predictive.ipynb": "learn/core_notebooks/posterior_predictive.ipynb",
"pymc-examples/examples/Gaussian_Processes.rst": "learn/core_notebooks/Gaussian_Processes.rst",
**{
f"pymc-examples/examples/{v3_path}.ipynb": "learn/core_notebooks/index.md"
for v3_path in v3_example_tutorials
},
}
# The reST default role (used for this markup: `text`) to use for all
# documents.
Expand Down
8 changes: 8 additions & 0 deletions docs/source/learn/core_notebooks/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,3 +12,11 @@ dimensionality
pymc_pytensor
Gaussian_Processes
:::

:::{note}
The notebooks above are executed with each version of the library
(available on the navigation bar). In addition, a much larger gallery
of example notebooks is available at the {doc}`"Examples" tab <nb:gallery>`.
These are executed more sparsely and independently.
They include a watermark to show which versions were used to run them.
:::