Skip to content

Faster linear_gradient to improve test speed #193

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 12 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 20 additions & 33 deletions branca/utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,40 +66,27 @@ def linear_gradient(hexList: List[str], nColors: int) -> List[str]:
nColors where the colors are linearly interpolated between the
(r, g, b) tuples that are given.
"""

def _scale(start, finish, length, i):
"""
Return the value correct value of a number that is in between start
and finish, for use in a loop of length *length*.

"""
base = 16

fraction = float(i) / (length - 1)
raynge = int(finish, base) - int(start, base)
thex = hex(int(int(start, base) + fraction * raynge)).split("x")[-1]
if len(thex) != 2:
thex = "0" + thex
return thex

allColors: List[str] = []
# Separate (R, G, B) pairs.
for start, end in zip(hexList[:-1], hexList[1:]):
# Linearly interpolate between pair of hex ###### values and
# add to list.
nInterpolate = 765
for index in range(nInterpolate):
r = _scale(start[1:3], end[1:3], nInterpolate, index)
g = _scale(start[3:5], end[3:5], nInterpolate, index)
b = _scale(start[5:7], end[5:7], nInterpolate, index)
allColors.append("".join(["#", r, g, b]))

# Pick only nColors colors from the total list.
input_color_bytes = [
[int(_hex[i : i + 2], 16) for i in (1, 3, 5)] for _hex in hexList
]
# to have the same output as the previous version of this function we use
# a resolution of 765 'indexes' per color bin.
resolution = 765
n_indexes = resolution * (len(hexList) - 1)
result: List[str] = []
for counter in range(nColors):
fraction = float(counter) / (nColors - 1)
index = int(fraction * (len(allColors) - 1))
result.append(allColors[index])
for counter in range(nColors - 1):
fraction_overall = float(counter) / (nColors - 1)
index_overall = int(fraction_overall * (n_indexes - 1))
index_color_bin = index_overall % resolution
idx_input = index_overall // resolution
fraction = index_color_bin / (resolution - 1)
start = input_color_bytes[idx_input]
end = input_color_bytes[idx_input + 1]
new_color_bytes = [int(x + fraction * (y - x)) for x, y in zip(start, end)]
new_color_hexs = [hex(x)[2:].zfill(2) for x in new_color_bytes]
result.append("#" + "".join(new_color_hexs))

result.append(hexList[-1].lower())
return result


Expand Down
79 changes: 79 additions & 0 deletions tests/test_utilities.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import json
import os
from pathlib import Path
from typing import List

import pytest

Expand Down Expand Up @@ -169,3 +170,81 @@ def test_write_png_rgb():
]
png = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x04\x00\x00\x00\x02\x08\x06\x00\x00\x00\x7f\xa8}c\x00\x00\x00-IDATx\xda\x01"\x00\xdd\xff\x00\xff\xa7G\xffp\xff+\xff\x9e\x1cH\xff9\x90$\xff\x00\x93\xe9\xb8\xff\x0cz\xe2\xff\xc6\xca\xff\xff\xd4W\xd0\xffYw\x15\x95\xcf\xb9@D\x00\x00\x00\x00IEND\xaeB`\x82' # noqa E501
assert ut.write_png(image_rgb) == png


@pytest.mark.parametrize(
"hex_list, n_colors, expected_output",
[
(["#000000", "#FFFFFF"], 2, ["#000000", "#ffffff"]),
(["#000000", "#FFFFFF"], 4, ["#000000", "#545454", "#a9a9a9", "#ffffff"]),
(["#FF0000", "#00FF00", "#0000FF"], 3, ["#ff0000", "#00ff00", "#0000ff"]),
(
["#FF0000", "#00FF00", "#0000FF"],
4,
["#ff0000", "#55a900", "#00aa54", "#0000ff"],
),
(
["#000000", "#0000FF"],
5,
["#000000", "#00003f", "#00007f", "#0000bf", "#0000ff"],
),
(
["#FFFFFF", "#000000"],
5,
["#ffffff", "#bfbfbf", "#7f7f7f", "#3f3f3f", "#000000"],
),
(
["#FF0000", "#00FF00", "#0000FF"],
5,
["#ff0000", "#7f7f00", "#00ff00", "#007f7f", "#0000ff"],
),
(
["#FF0000", "#00FF00", "#0000FF"],
7,
[
"#ff0000",
"#aa5400",
"#55a900",
"#00ff00",
"#00aa54",
"#0055a9",
"#0000ff",
],
),
(
["#abcdef", "#010603", "#f7f9f3"],
4,
["#abcdef", "#394851", "#525652", "#f7f9f3"],
),
(
["#abcdef", "#010603", "#f7f9f3"],
7,
[
"#abcdef",
"#728aa0",
"#394851",
"#010603",
"#525652",
"#a4a7a2",
"#f7f9f3",
],
),
(
["#00abff", "#ff00ab", "#abff00", "#00abff"],
4,
["#00abff", "#ff00ab", "#abff00", "#00abff"],
),
(
["#00abff", "#ff00ab", "#abff00", "#00abff"],
6,
["#00abff", "#9844cc", "#ee3288", "#bbcb22", "#66dd65", "#00abff"],
),
],
)
def test_linear_gradient(
hex_list: List[str],
n_colors: int,
expected_output: List[str],
):
result = ut.linear_gradient(hex_list, n_colors)
assert result == expected_output