Skip to content

bpo-44376 - reduce pow() overhead for small exponents #26662

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Jun 12, 2021
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Exact integer exponentiation (like ``i**2`` or ``pow(i, 2)``) with a small exponent is much faster, due to reducing overhead in such cases.
50 changes: 45 additions & 5 deletions Objects/longobject.c
Original file line number Diff line number Diff line change
Expand Up @@ -4239,17 +4239,57 @@ long_pow(PyObject *v, PyObject *w, PyObject *x)
REDUCE(result); \
} while(0)

if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
i = Py_SIZE(b);
digit bi = i ? b->ob_digit[i-1] : 0;
digit bit;
if (i <= 1 && bi <= 3) {
/* aim for minimal overhead */
if (bi >= 2) {
MULT(a, a, z);
if (bi == 3) {
MULT(z, a, z);
}
}
else if (bi == 1) {
/* Multiplying by 1 serves two purposes: if `a` is of an int
* subclass, makes the result an int (e.g., pow(False, 1) returns
* 0 instead of False), and potentially reduces `a` by the modulus.
*/
MULT(a, z, z);
}
/* else bi is 0, and z==1 is correct */
}
else if (i <= FIVEARY_CUTOFF) {
/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
digit bi = b->ob_digit[i];

for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
/* Find the first significant exponent bit. Search right to left
* because we're primarily trying to cut overhead for small powers.
*/
assert(bi); /* else there is no significant bit */
Py_INCREF(a);
Py_DECREF(z);
z = a;
for (bit = 2; ; bit <<= 1) {
if (bit > bi) { /* found the first bit */
assert((bi & bit) == 0);
bit >>= 1;
assert(bi & bit);
break;
}
}
for (--i, bit >>= 1;;) {
for (; bit != 0; bit >>= 1) {
MULT(z, z, z);
if (bi & j)
if (bi & bit) {
MULT(z, a, z);
}
}
if (--i < 0) {
break;
}
bi = b->ob_digit[i];
bit = (digit)1 << (PyLong_SHIFT-1);
}
}
else {
Expand Down