|
| 1 | +# Stable Diffusion text-to-image fine-tuning using PyTorch/XLA |
| 2 | + |
| 3 | +The `train_text_to_image_xla.py` script shows how to fine-tune stable diffusion model on TPU devices using PyTorch/XLA. |
| 4 | + |
| 5 | +It has been tested on v4 and v5p TPU versions. |
| 6 | + |
| 7 | +This script implements Distributed Data Parallel using GSPMD feature in XLA compiler |
| 8 | +where we shard the input batches over the TPU devices. |
| 9 | + |
| 10 | +## Create TPU |
| 11 | + |
| 12 | +To create a TPU on Google Cloud first set these environment variables: |
| 13 | + |
| 14 | +```bash |
| 15 | +export TPU_NAME=<tpu-name> |
| 16 | +export PROJECT_ID=<project-id> |
| 17 | +export ZONE=<google-cloud-zone> |
| 18 | +export ACCELERATOR_TYPE=<accelerator type like v5p-8> |
| 19 | +export RUNTIME_VERSION=<runtime version like v2-alpha-tpuv5 for v5p> |
| 20 | +``` |
| 21 | + |
| 22 | +Then run the create TPU command: |
| 23 | +```bash |
| 24 | +gcloud alpha compute tpus tpu-vm create ${TPU_NAME} --project ${PROJECT_ID} |
| 25 | +--zone ${ZONE} --accelerator-type ${ACCELERATOR_TYPE} --version ${RUNTIME_VERSION} |
| 26 | +--reserved |
| 27 | +``` |
| 28 | + |
| 29 | +You can also use other ways to reserve TPUs like GKE or queued resources. |
| 30 | + |
| 31 | +## Setup TPU environment |
| 32 | + |
| 33 | +Install PyTorch and PyTorch/XLA nightly versions: |
| 34 | +```bash |
| 35 | +gcloud compute tpus tpu-vm ssh ${TPU_NAME} \ |
| 36 | +--project=${PROJECT_ID} --zone=${ZONE} --worker=all \ |
| 37 | +--command=' |
| 38 | +pip3 install --pre torch==2.5.0.dev20240905+cpu torchvision==0.20.0.dev20240905+cpu --index-url https://download.pytorch.org/whl/nightly/cpu |
| 39 | +pip install "torch_xla[tpu] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.5.0.dev20240905-cp310-cp310-linux_x86_64.whl" -f https://storage.googleapis.com/libtpu-releases/index.html' |
| 40 | +``` |
| 41 | +This script has been tested with the above versions but it expected to work with future versions as well. |
| 42 | + |
| 43 | +Verify that PyTorch and PyTorch/XLA were installed correctly: |
| 44 | + |
| 45 | +```bash |
| 46 | +gcloud compute tpus tpu-vm ssh ${TPU_NAME} \ |
| 47 | +--project ${PROJECT_ID} --zone ${ZONE} --worker=all \ |
| 48 | +--command='python3 -c "import torch; import torch_xla;"' |
| 49 | +``` |
| 50 | + |
| 51 | +Install this fork of huggingface diffusers repo: |
| 52 | +```bash |
| 53 | +gcloud compute tpus tpu-vm ssh ${TPU_NAME} \ |
| 54 | +--project=${PROJECT_ID} --zone=${ZONE} --worker=all \ |
| 55 | +--command=' |
| 56 | +git clone https://github.com/pytorch-tpu/diffusers.git |
| 57 | +cd diffusers |
| 58 | +git checkout main |
| 59 | +cd examples/text_to_image |
| 60 | +pip install -r requirements.txt |
| 61 | +cd ../.. |
| 62 | +sudo pip install -e .' |
| 63 | +``` |
| 64 | + |
| 65 | +## Run the training job |
| 66 | + |
| 67 | +This script only trains the unet part of the network. The VAE and text encoder |
| 68 | +are fixed. |
| 69 | + |
| 70 | +```bash |
| 71 | +gcloud compute tpus tpu-vm ssh ${TPU_NAME} \ |
| 72 | +--project=${PROJECT_ID} --zone=${ZONE} --worker=all \ |
| 73 | +--command=' |
| 74 | +export XLA_DISABLE_FUNCTIONALIZATION=1 |
| 75 | +export PROFILE_DIR=/tmp/profile # Update the directory to store profiles if needed. |
| 76 | +export CACHE_DIR=/tmp/xla_cache # Update the cache to store compiled XLA graphs if needed. |
| 77 | +export DATASET_NAME=lambdalabs/naruto-blip-captions |
| 78 | +export PER_HOST_BATCH_SIZE=16 # This is know to work on TPU v4. Can set this to 64 for TPU v5p. |
| 79 | +export TRAIN_STEPS=50 |
| 80 | +export OUTPUT_DIR=/tmp/output/ |
| 81 | +python diffusers/examples/text_to_image/train_text_to_image_xla.py \ |
| 82 | + --pretrained_model_name_or_path=stabilityai/stable-diffusion-2-base \ |
| 83 | + --dataset_name=$DATASET_NAME --resolution=512 --center_crop --random_flip \ |
| 84 | + --train_batch_size=$PER_HOST_BATCH_SIZE --max_train_steps=$TRAIN_STEPS \ |
| 85 | + --learning_rate=1e-06 --mixed_precision=bf16 --profile_duration=80000 \ |
| 86 | + --output_dir=$OUTPUT_DIR --dataloader_num_workers=4 \ |
| 87 | + --loader_prefetch_size=4 --device_prefetch_size=4' |
| 88 | +``` |
| 89 | + |
| 90 | +### Environment Envs Explained |
| 91 | + |
| 92 | +* `XLA_DISABLE_FUNCTIONALIZATION`: To optimize the performance for AdamW optimizer. |
| 93 | +* `PROFILE_DIR`: Specify where to put the profiling results. |
| 94 | +* `CACHE_DIR`: Directory to store XLA compiled graphs for persistent caching. |
| 95 | +* `DATASET_NAME`: Dataset to train the model. |
| 96 | +* `PER_HOST_BATCH_SIZE`: Size of the batch to load per CPU host. For e.g. for a v5p-16 with 2 CPU hosts, the global batch size will be 2xPER_HOST_BATCH_SIZE. The input batch is sharded along the batch axis. |
| 97 | +* `TRAIN_STEPS`: Total number of training steps to run the training for. |
| 98 | +* `OUTPUT_DIR`: Directory to store the fine-tuned model. |
| 99 | + |
| 100 | +## Run inference using the output model |
| 101 | + |
| 102 | +To run inference using the output, you can simply load the model and pass it |
| 103 | +input prompts: |
| 104 | + |
| 105 | +```python |
| 106 | +import torch |
| 107 | +import os |
| 108 | +import sys |
| 109 | +import numpy as np |
| 110 | + |
| 111 | +import torch_xla.core.xla_model as xm |
| 112 | +from time import time |
| 113 | +from typing import Tuple |
| 114 | +from diffusers import StableDiffusionPipeline |
| 115 | + |
| 116 | +def main(args): |
| 117 | + device = xm.xla_device() |
| 118 | + model_path = <output_dir> |
| 119 | + pipe = StableDiffusionPipeline.from_pretrained( |
| 120 | + model_path, |
| 121 | + torch_dtype=torch.bfloat16 |
| 122 | + ) |
| 123 | + pipe.to(device) |
| 124 | + prompt = ["A naruto with green eyes and red legs."] |
| 125 | + image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] |
| 126 | + image.save("naruto.png") |
| 127 | + |
| 128 | +if __name__ == '__main__': |
| 129 | + main() |
| 130 | +``` |
0 commit comments