Skip to content

Fx2trt converters #1658

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 7 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions py/torch_tensorrt/fx/converters/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from .quantization import * # noqa: F401 F403
from .acc_ops_converters import * # noqa: F401 F403
from .aten_ops_converters import * # noqa: F401 F403
from .fx2trt_ops_converter import * # noqa: F401 F403

TRT_LOGGER = trt.Logger()
trt.init_libnvinfer_plugins(TRT_LOGGER, "")
196 changes: 98 additions & 98 deletions py/torch_tensorrt/fx/converters/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,104 +25,104 @@

_LOGGER: logging.Logger = logging.getLogger(__name__)

## converter list in alphabetic order
@tensorrt_converter(torch.ops.aten.add.Tensor)
def aten_ops_add(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
"other": args[1],
}
return acc_ops_converters.acc_ops_add(network, target, None, kwargs_new, name)


@tensorrt_converter(torch.ops.aten.mean.dim)
@tensorrt_converter(torch.ops.aten._adaptive_avg_pool3d.default)
@tensorrt_converter(torch.ops.aten._adaptive_avg_pool2d.default)
def aten_ops_adaptive_avg_poolnd(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
if target == torch.ops.aten.mean.dim:

if list(args[1]) != [-1, -2]:
raise RuntimeError(f"We do not support {target} has dim={args[1]}")
else:
output_size = [1, 1]
else:
output_size = args[1]

kwargs_new = {
"input": args[0],
"output_size": output_size,
}
return acc_ops_converters.acc_ops_adaptive_avg_poolnd(
network, target, None, kwargs_new, name
)


@tensorrt_converter(torch.ops.aten.batch_norm)
def aten_ops_batch_norm(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
"weight": args[1],
"bias": args[2],
"running_mean": args[3],
"running_var": args[4],
"training": args[5],
"momentum": args[6],
"eps": args[7],
}
return acc_ops_converters.acc_ops_batch_norm(
network, target, None, kwargs_new, name
)


@tensorrt_converter(torch.ops.aten.convolution.default)
def aten_ops_convolution(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
kwargs_new = {
"input": args[0],
"weight": args[1],
"bias": args[2],
"stride": args[3],
"padding": args[4],
"dilation": args[5],
"groups": args[8],
}
# we do not handle transposed.
if args[6] is True:
raise RuntimeError(f"Target {target} does not support `transposed=True` ")
# we do not handle output_padding.
if args[7] not in ([0], [0, 0], [0, 0, 0]):
raise RuntimeError(f"Target {target} has non-0 output_padding")
if len(kwargs_new["stride"]) == 1:
return acc_ops_converters.acc_ops_conv1d(
network, target, None, kwargs_new, name
)
else:
return acc_ops_converters.acc_ops_convnd(
network, target, None, kwargs_new, name
)
# converter list in alphabetic order
# @tensorrt_converter(torch.ops.aten.add.Tensor)
# def aten_ops_add(
# network: TRTNetwork,
# target: Target,
# args: Tuple[Argument, ...],
# kwargs: Dict[str, Argument],
# name: str,
# ) -> Union[TRTTensor, Sequence[TRTTensor]]:
# kwargs_new = {
# "input": args[0],
# "other": args[1],
# }
# return acc_ops_converters.acc_ops_add(network, target, None, kwargs_new, name)


# @tensorrt_converter(torch.ops.aten.mean.dim)
# @tensorrt_converter(torch.ops.aten._adaptive_avg_pool3d.default)
# @tensorrt_converter(torch.ops.aten._adaptive_avg_pool2d.default)
# def aten_ops_adaptive_avg_poolnd(
# network: TRTNetwork,
# target: Target,
# args: Tuple[Argument, ...],
# kwargs: Dict[str, Argument],
# name: str,
# ) -> Union[TRTTensor, Sequence[TRTTensor]]:
# if target == torch.ops.aten.mean.dim:

# if list(args[1]) != [-1, -2]:
# raise RuntimeError(f"We do not support {target} has dim={args[1]}")
# else:
# output_size = [1, 1]
# else:
# output_size = args[1]

# kwargs_new = {
# "input": args[0],
# "output_size": output_size,
# }
# return acc_ops_converters.acc_ops_adaptive_avg_poolnd(
# network, target, None, kwargs_new, name
# )


# @tensorrt_converter(torch.ops.aten.batch_norm)
# def aten_ops_batch_norm(
# network: TRTNetwork,
# target: Target,
# args: Tuple[Argument, ...],
# kwargs: Dict[str, Argument],
# name: str,
# ) -> Union[TRTTensor, Sequence[TRTTensor]]:
# kwargs_new = {
# "input": args[0],
# "weight": args[1],
# "bias": args[2],
# "running_mean": args[3],
# "running_var": args[4],
# "training": args[5],
# "momentum": args[6],
# "eps": args[7],
# }
# return acc_ops_converters.acc_ops_batch_norm(
# network, target, None, kwargs_new, name
# )


# @tensorrt_converter(torch.ops.aten.convolution.default)
# def aten_ops_convolution(
# network: TRTNetwork,
# target: Target,
# args: Tuple[Argument, ...],
# kwargs: Dict[str, Argument],
# name: str,
# ) -> Union[TRTTensor, Sequence[TRTTensor]]:
# kwargs_new = {
# "input": args[0],
# "weight": args[1],
# "bias": args[2],
# "stride": args[3],
# "padding": args[4],
# "dilation": args[5],
# "groups": args[8],
# }
# # we do not handle transposed.
# if args[6] is True:
# raise RuntimeError(f"Target {target} does not support `transposed=True` ")
# # we do not handle output_padding.
# if args[7] not in ([0], [0, 0], [0, 0, 0]):
# raise RuntimeError(f"Target {target} has non-0 output_padding")
# if len(kwargs_new["stride"]) == 1:
# return acc_ops_converters.acc_ops_conv1d(
# network, target, None, kwargs_new, name
# )
# else:
# return acc_ops_converters.acc_ops_convnd(
# network, target, None, kwargs_new, name
# )


@tensorrt_converter(torch.ops.aten.div.default)
Expand Down
Loading