Skip to content

fix: Implement aten.mean.default and aten.mean.dim converters #1810

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 24 additions & 11 deletions py/torch_tensorrt/fx/converters/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,6 @@ def aten_ops_add(
return acc_ops_converters.acc_ops_add(network, target, None, kwargs_new, name)


@tensorrt_converter(torch.ops.aten.mean.dim)
@tensorrt_converter(torch.ops.aten._adaptive_avg_pool3d.default)
@tensorrt_converter(torch.ops.aten._adaptive_avg_pool2d.default)
def aten_ops_adaptive_avg_poolnd(
Expand All @@ -51,24 +50,38 @@ def aten_ops_adaptive_avg_poolnd(
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
if target == torch.ops.aten.mean.dim:

if list(args[1]) != [-1, -2]:
raise RuntimeError(f"We do not support {target} has dim={args[1]}")
else:
output_size = [1, 1]
else:
output_size = args[1]

kwargs_new = {
"input": args[0],
"output_size": output_size,
"output_size": args[1],
}
return acc_ops_converters.acc_ops_adaptive_avg_poolnd(
network, target, None, kwargs_new, name
)


@tensorrt_converter(torch.ops.aten.mean.default)
@tensorrt_converter(torch.ops.aten.mean.dim)
def aten_ops_mean(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> TRTTensor:
# Default invocation of aten.mean only uses first argument and
# averages over all elements (all dimensions)
# aten.mean.dim invocation allows specification of dimensions to average
# over, as well at the option to keep the dimension or not
kwargs_new = {
"input": args[0],
"dim": args[1] if len(args) >= 2 else list(range(len(args[0].shape))),
"keepdim": args[2] if len(args) >= 3 else False,
}
return add_reduce_layer(
network, target, args, kwargs_new, trt.ReduceOperation.AVG, name
)


@tensorrt_converter(torch.ops.aten.batch_norm)
def aten_ops_batch_norm(
network: TRTNetwork,
Expand Down
84 changes: 84 additions & 0 deletions py/torch_tensorrt/fx/test/converters/aten_op/test_mean_aten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
import torch
import torch.nn as nn
from torch.testing._internal.common_utils import run_tests
from torch_tensorrt.fx.tools.common_fx2trt import DispatchTestCase, InputTensorSpec


class TestMeanDimConverter(DispatchTestCase):
def test_mean_dim_keepdims(self):
class TestModule(nn.Module):
def forward(self, x):
return torch.mean(x, dim=[0, 1], keepdim=True)

inputs = [torch.randn(1, 10)]
self.run_test(TestModule(), inputs, expected_ops={torch.ops.aten.mean.dim})

def test_mean_dim_keepdims_with_dynamic_shape(self):
class TestModule(nn.Module):
def forward(self, x):
return torch.mean(x, dim=[0, 1, 2], keepdim=True)

input_specs = [
InputTensorSpec(
shape=(-1, -1, -1),
dtype=torch.float32,
shape_ranges=[((1, 1, 1), (1, 2, 3), (3, 3, 3))],
),
]
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={torch.ops.aten.mean.dim}
)

def test_mean_dim_keepdims_false(self):
class TestModule(nn.Module):
def forward(self, x):
return torch.mean(x, dim=0, keepdim=False)

inputs = [torch.randn(3, 5, 7)]
self.run_test(TestModule(), inputs, expected_ops={torch.ops.aten.mean.dim})

def test_mean_dim_keepdims_false_with_dynamic_shape(self):
class TestModule(nn.Module):
def forward(self, x):
return torch.mean(x, dim=-1, keepdim=False)

input_specs = [
InputTensorSpec(
shape=(-1, -1, -1),
dtype=torch.float32,
shape_ranges=[((1, 1, 1), (1, 2, 3), (3, 3, 3))],
),
]
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={torch.ops.aten.mean.dim}
)


class TestMeanConverter(DispatchTestCase):
def test_mean(self):
class TestModule(nn.Module):
def forward(self, x):
return torch.mean(x)

inputs = [torch.randn(3, 8, 5, 7, 1)]
self.run_test(TestModule(), inputs, expected_ops={torch.ops.aten.mean.default})

def test_mean_with_dynamic_shape(self):
class TestModule(nn.Module):
def forward(self, x):
return torch.mean(x)

input_specs = [
InputTensorSpec(
shape=(-1, -1, -1),
dtype=torch.float32,
shape_ranges=[((1, 1, 1), (1, 5, 8), (3, 10, 10))],
),
]
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={torch.ops.aten.mean.default}
)


if __name__ == "__main__":
run_tests()