Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -2596,3 +2596,26 @@ def aten_ops_remainder(
args[0],
args[1],
)


@dynamo_tensorrt_converter(torch.ops.aten._pdist_forward.default)
@enforce_tensor_types(
{
0: (TRTTensor,),
}
)
def aten_ops_pdist(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.normalization.pdist(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
args_bounds_check(args, 1, 2),
)
68 changes: 68 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/impl/normalization/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from torch_tensorrt.dynamo.conversion import impl
from torch_tensorrt.dynamo.conversion._ConversionContext import ConversionContext
from torch_tensorrt.dynamo.conversion.converter_utils import (
cast_trt_tensor,
get_positive_dim,
get_trt_tensor,
to_numpy,
Expand Down Expand Up @@ -440,3 +441,70 @@ def get_softmax_dim(ndim: int) -> int:
layer.axes = 1 << dim
set_layer_name(layer, target, name, source_ir)
return layer.get_output(0)


def pdist(
ctx: ConversionContext,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input: TRTTensor,
p: float = 2,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
shape = input.shape
extend_input = impl.shuffle.reshape(
ctx,
target,
source_ir,
f"{name}_reshape",
input,
shape=shape[0:1] + (1,) + shape[1:],
)
x = impl.elementwise.sub(ctx, target, source_ir, f"{name}_sub", extend_input, input)

if p == 0:
# norm = torch.sum(x!=0, dim=2)
nonzero_val = impl.elementwise.ne(ctx, target, source_ir, f"{name}_ne", x, 0)
norm = impl.reduce.sum(
ctx, target, source_ir, f"{name}_sum", nonzero_val, dim=2, keepdim=False
)
norm = cast_trt_tensor(
ctx, norm, torch.float32, f"{name}_cast", target, source_ir
)
elif p == 1:
# norm = torch.sum(torch.abs(x), dim=2)
abs_val = impl.unary.abs(ctx, target, source_ir, f"{name}_abs", x)
norm = impl.reduce.sum(
ctx, target, source_ir, f"{name}_sum", abs_val, dim=2, keepdim=False
)
elif 0 < p < 1 or 1 < p < float("inf"):
# norm = torch.pow(torch.sum(torch.pow(torch.abs(x), p), dim=2), 1/p)
abs_val = impl.unary.abs(ctx, target, source_ir, f"{name}_abs", x)
pow_val = impl.elementwise.pow(
ctx, target, source_ir, f"{name}_pow1", abs_val, p
)
sum_val = impl.reduce.sum(
ctx, target, source_ir, f"{name}_sum", pow_val, dim=2, keepdim=False
)
norm = impl.elementwise.pow(
ctx, target, source_ir, f"{name}_pow2", sum_val, 1 / p
)
elif p == float("inf"):
# norm = torch.max(torch.abs(x))
abs_val = impl.unary.abs(ctx, target, source_ir, f"{name}_abs", x)
norm = impl.reduce.max(
ctx,
target,
source_ir,
f"{name}_max",
abs_val,
dim=2,
keepdim=False,
return_indices=False,
)
else:
raise RuntimeError(
f"p should between [0, inf], currently p={p} is not supported!"
)
indices = np.triu_indices(shape[0], k=1)
return impl.select.index(ctx, target, source_ir, f"{name}_index", norm, indices)
36 changes: 36 additions & 0 deletions tests/py/dynamo/conversion/test_pdist_aten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
import torch
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests

from .harness import DispatchTestCase


class TestPdistConverter(DispatchTestCase):
@parameterized.expand(
[
((2, 3), 0),
((2, 3), 0.4),
((2, 3), 1),
((2, 3), 1.5),
((3, 4), 2),
((3, 4), 2.99),
((4, 5), 3),
((4, 5), 3.3),
((5, 6), float("inf")),
]
)
def test_pdist_float(self, shape, p):
class Pdist(nn.Module):
def forward(self, input):
return torch.ops.aten._pdist_forward.default(input, p)

inputs = [torch.randn(shape)]
self.run_test(
Pdist(),
inputs,
)


if __name__ == "__main__":
run_tests()