Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -2708,6 +2708,23 @@ def aten_ops_scalar_tensor(
)


@dynamo_tensorrt_converter(torch.ops.aten.log10.default)
def log10(
ctx: ConversionContext,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
return impl.unary.log10(
ctx,
target,
SourceIR.ATEN,
name,
args[0],
)


@dynamo_tensorrt_converter(torch.ops.aten.roll.default)
@enforce_tensor_types(
{
Expand Down
16 changes: 16 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/impl/unary/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,22 @@ def log(
)


def log10(
ctx: ConversionContext,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input_val: TRTTensor,
) -> TRTTensor:
log_layer_output = log(ctx, target, source_ir, f"{name}_log", input_val)

ln10 = 2.302585092994046

return impl.elementwise.div(
ctx, target, source_ir, f"{name}_div", log_layer_output, ln10
)


def sqrt(
ctx: ConversionContext,
target: Target,
Expand Down
49 changes: 49 additions & 0 deletions tests/py/dynamo/conversion/test_log10.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
import torch
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests

from .harness import DispatchTestCase


class TestLogConverter(DispatchTestCase):
@parameterized.expand(
[
((10,), torch.float),
((1, 20), torch.float),
((2, 3, 4), torch.float),
((2, 3, 4, 5), torch.float),
]
)
def test_log10_float(self, input_shape, dtype):
class log10(nn.Module):
def forward(self, input):
return torch.ops.aten.log10.default(input)

inputs = [torch.randn(input_shape, dtype=dtype)]
self.run_test(
log10(),
inputs,
)

@parameterized.expand(
[
((10,), torch.int, 0, 5),
((1, 20), torch.int32, -10, 10),
((2, 3, 4), torch.int, -5, 5),
]
)
def test_log10_int(self, input_shape, dtype, low, high):
class log10(nn.Module):
def forward(self, input):
return torch.ops.aten.log10.default(input)

inputs = [torch.randint(low, high, input_shape, dtype=dtype)]
self.run_test(
log10(),
inputs,
)


if __name__ == "__main__":
run_tests()