-
Notifications
You must be signed in to change notification settings - Fork 9.7k
Update ImageNet training code #16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,97 +1,262 @@ | ||
import argparse | ||
import os | ||
import shutil | ||
import time | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.parallel | ||
import torch.backends.cudnn as cudnn | ||
import torch.optim | ||
import torch.utils.trainer as trainer | ||
import torch.utils.trainer.plugins | ||
import torch.utils.data | ||
import torchvision.transforms as transforms | ||
import torchvision.datasets as datasets | ||
|
||
import resnet | ||
|
||
|
||
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') | ||
parser.add_argument('--data', metavar='PATH', required=True, | ||
help='path to dataset') | ||
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', | ||
help='model architecture: resnet18 | resnet34 | ...' | ||
'(default: resnet18)') | ||
parser.add_argument('--gen', default='gen', metavar='PATH', | ||
help='path to save generated files (default: gen)') | ||
parser.add_argument('--nThreads', '-j', default=2, type=int, metavar='N', | ||
help='number of data loading threads (default: 2)') | ||
parser.add_argument('--nEpochs', default=90, type=int, metavar='N', | ||
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', | ||
help='number of data loading workers (default: 4)') | ||
parser.add_argument('--epochs', default=90, type=int, metavar='N', | ||
help='number of total epochs to run') | ||
parser.add_argument('--epochNumber', default=1, type=int, metavar='N', | ||
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', | ||
help='manual epoch number (useful on restarts)') | ||
parser.add_argument('--batchSize', '-b', default=256, type=int, metavar='N', | ||
help='mini-batch size (1 = pure stochastic) Default: 256') | ||
parser.add_argument('--lr', default=0.1, type=float, metavar='LR', | ||
help='initial learning rate') | ||
parser.add_argument('-b', '--batch-size', default=256, type=int, | ||
metavar='N', help='mini-batch size (default: 256)') | ||
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, | ||
metavar='LR', help='initial learning rate') | ||
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', | ||
help='momentum') | ||
parser.add_argument('--weightDecay', default=1e-4, type=float, metavar='W', | ||
help='weight decay') | ||
args = parser.parse_args() | ||
|
||
if args.arch.startswith('resnet'): | ||
model = resnet.__dict__[args.arch]() | ||
model.cuda() | ||
else: | ||
parser.error('invalid architecture: {}'.format(args.arch)) | ||
|
||
cudnn.benchmark = True | ||
|
||
# Data loading code | ||
transform = transforms.Compose([ | ||
transforms.RandomSizedCrop(224), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ], | ||
std = [ 0.229, 0.224, 0.225 ]), | ||
]) | ||
|
||
traindir = os.path.join(args.data, 'train') | ||
valdir = os.path.join(args.data, 'val') | ||
train = datasets.ImageFolder(traindir, transform) | ||
val = datasets.ImageFolder(valdir, transform) | ||
train_loader = torch.utils.data.DataLoader( | ||
train, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads) | ||
|
||
|
||
# create a small container to apply DataParallel to the ResNet | ||
class DataParallel(nn.Container): | ||
def __init__(self): | ||
super(DataParallel, self).__init__( | ||
model=model, | ||
) | ||
|
||
def forward(self, input): | ||
if torch.cuda.device_count() > 1: | ||
gpu_ids = range(torch.cuda.device_count()) | ||
return nn.parallel.data_parallel(self.model, input, gpu_ids) | ||
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, | ||
metavar='W', help='weight decay (default: 1e-4)') | ||
parser.add_argument('--print-freq', '-p', default=10, type=int, | ||
metavar='N', help='print frequency (default: 10)') | ||
parser.add_argument('--resume', default='', type=str, metavar='PATH', | ||
help='path to latest checkpoint (default: none)') | ||
|
||
best_prec1 = 0 | ||
|
||
|
||
def main(): | ||
global args, best_prec1 | ||
args = parser.parse_args() | ||
|
||
# create model | ||
if args.arch.startswith('resnet'): | ||
print("=> creating model '{}'".format(args.arch)) | ||
model = resnet.__dict__[args.arch]() | ||
model.cuda() | ||
else: | ||
parser.error('invalid architecture: {}'.format(args.arch)) | ||
|
||
# optionally resume from a checkpoint | ||
if args.resume: | ||
if os.path.isfile(args.resume): | ||
print("=> loading checkpoint '{}'".format(args.resume)) | ||
checkpoint = torch.load(args.resume) | ||
args.start_epoch = checkpoint['epoch'] | ||
best_prec1 = checkpoint['best_prec1'] | ||
model.load_state_dict(checkpoint['state_dict']) | ||
print(" | resuming from epoch {}".format(args.start_epoch)) | ||
else: | ||
return self.model(input.cuda()).cpu() | ||
print("=> no checkpoint found at '{}'".format(args.resume)) | ||
|
||
cudnn.benchmark = True | ||
|
||
# Data loading code | ||
traindir = os.path.join(args.data, 'train') | ||
valdir = os.path.join(args.data, 'val') | ||
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]) | ||
|
||
train_loader = torch.utils.data.DataLoader( | ||
datasets.ImageFolder(traindir, transforms.Compose([ | ||
transforms.RandomSizedCrop(224), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
normalize, | ||
])), | ||
batch_size=args.batch_size, shuffle=True, | ||
num_workers=args.workers, pin_memory=True) | ||
|
||
val_loader = torch.utils.data.DataLoader( | ||
datasets.ImageFolder(valdir, transforms.Compose([ | ||
transforms.Scale(256), | ||
transforms.CenterCrop(224), | ||
transforms.ToTensor(), | ||
normalize, | ||
])), | ||
batch_size=args.batch_size, shuffle=False, | ||
num_workers=args.workers, pin_memory=True) | ||
|
||
# parallelize model across all visible GPUs | ||
model = torch.nn.DataParallel(model) | ||
|
||
# define loss function (criterion) and pptimizer | ||
criterion = nn.CrossEntropyLoss().cuda() | ||
This comment was marked as off-topic.
Sorry, something went wrong. |
||
|
||
optimizer = torch.optim.SGD(model.parameters(), args.lr, | ||
momentum=args.momentum, | ||
weight_decay=args.weight_decay) | ||
|
||
for epoch in range(args.start_epoch, args.epochs): | ||
adjust_learning_rate(optimizer, epoch) | ||
|
||
# train for one epoch | ||
model.train() | ||
train(train_loader, model, criterion, optimizer, epoch) | ||
|
||
# evaluate on validation set | ||
model.eval() | ||
prec1 = validate(val_loader, model, criterion) | ||
|
||
# remember best prec@1 and save checkpoint | ||
is_best = prec1 > best_prec1 | ||
best_prec1 = max(prec1, best_prec1) | ||
save_checkpoint({ | ||
'epoch': epoch, | ||
'arch': args.arch, | ||
'state_dict': model.state_dict(), | ||
'best_prec1': best_prec1, | ||
}, is_best) | ||
|
||
|
||
def train(train_loader, model, criterion, optimizer, epoch): | ||
batch_time = AverageMeter() | ||
data_time = AverageMeter() | ||
losses = AverageMeter() | ||
top1 = AverageMeter() | ||
top5 = AverageMeter() | ||
|
||
end = time.time() | ||
for i, (input, target) in enumerate(train_loader): | ||
# measure data loading time | ||
data_time.update(time.time() - end) | ||
|
||
target = target.cuda(async=True) | ||
input_var = torch.autograd.Variable(input) | ||
target_var = torch.autograd.Variable(target) | ||
|
||
# compute output | ||
output = model(input_var) | ||
loss = criterion(output, target_var) | ||
|
||
# measure accuracy and record loss | ||
prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) | ||
losses.update(loss.data[0]) | ||
top1.update(prec1[0]) | ||
top5.update(prec5[0]) | ||
|
||
# compute gradient and do SGD step | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
# measure elapsed time | ||
batch_time.update(time.time() - end) | ||
end = time.time() | ||
|
||
if i % args.print_freq == 0: | ||
print('Epoch: [{0}][{1}/{2}]\t' | ||
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' | ||
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' | ||
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' | ||
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' | ||
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( | ||
epoch, i, len(train_loader), batch_time=batch_time, | ||
data_time=data_time, loss=losses, top1=top1, top5=top5)) | ||
|
||
|
||
def validate(val_loader, model, criterion): | ||
batch_time = AverageMeter() | ||
losses = AverageMeter() | ||
top1 = AverageMeter() | ||
top5 = AverageMeter() | ||
|
||
end = time.time() | ||
for i, (input, target) in enumerate(val_loader): | ||
target = target.cuda(async=True) | ||
input_var = torch.autograd.Variable(input, volatile=True) | ||
target_var = torch.autograd.Variable(target, volatile=True) | ||
|
||
# compute output | ||
output = model(input_var) | ||
loss = criterion(output, target_var) | ||
|
||
# measure accuracy and record loss | ||
prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) | ||
losses.update(loss.data[0]) | ||
top1.update(prec1[0]) | ||
top5.update(prec5[0]) | ||
|
||
# measure elapsed time | ||
batch_time.update(time.time() - end) | ||
end = time.time() | ||
|
||
if i % args.print_freq == 0: | ||
print('Test: [{0}/{1}]\t' | ||
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' | ||
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' | ||
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' | ||
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( | ||
i, len(val_loader), batch_time=batch_time, loss=losses, | ||
top1=top1, top5=top5)) | ||
|
||
return top1.avg | ||
|
||
|
||
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): | ||
torch.save(state, filename) | ||
if is_best: | ||
shutil.copyfile(filename, 'model_best.pth.tar') | ||
|
||
|
||
class AverageMeter(object): | ||
"""Computes and stores the average and current value""" | ||
def __init__(self): | ||
self.reset() | ||
|
||
def reset(self): | ||
self.val = 0 | ||
self.avg = 0 | ||
self.sum = 0 | ||
self.n = 0 | ||
|
||
def update(self, val): | ||
self.val = val | ||
self.sum += val | ||
self.n += 1 | ||
self.avg = self.sum / self.n | ||
|
||
|
||
def adjust_learning_rate(optimizer, epoch): | ||
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" | ||
lr = args.lr * (0.1 ** (epoch // 30)) | ||
for param_group in optimizer.state_dict()['param_groups']: | ||
This comment was marked as off-topic.
Sorry, something went wrong. |
||
param_group['lr'] = lr | ||
|
||
model = DataParallel() | ||
|
||
# define Loss Function and Optimizer | ||
criterion = nn.CrossEntropyLoss().cuda() | ||
optimizer = torch.optim.SGD(model.parameters(), args.lr, args.momentum) | ||
def accuracy(output, target, topk=(1,)): | ||
"""Computes the precision@k for the specified values of k""" | ||
maxk = max(topk) | ||
batch_size = target.size(0) | ||
|
||
_, pred = output.topk(maxk, True, True) | ||
pred = pred.t() | ||
correct = pred.eq(target.view(1, -1).expand_as(pred)) | ||
|
||
# pass model, loss, optimizer and dataset to the trainer | ||
t = trainer.Trainer(model, criterion, optimizer, train_loader) | ||
res = [] | ||
for k in topk: | ||
correct_k = correct[:k].view(-1).float().sum(0) | ||
res.append(correct_k.mul_(100.0 / batch_size)) | ||
return res | ||
|
||
# register some monitoring plugins | ||
t.register_plugin(trainer.plugins.ProgressMonitor()) | ||
t.register_plugin(trainer.plugins.AccuracyMonitor()) | ||
t.register_plugin(trainer.plugins.LossMonitor()) | ||
t.register_plugin(trainer.plugins.TimeMonitor()) | ||
t.register_plugin(trainer.plugins.Logger(['progress', 'accuracy', 'loss', 'time'])) | ||
|
||
# train! | ||
t.run(args.nEpochs) | ||
if __name__ == '__main__': | ||
main() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This comment was marked as off-topic.
Sorry, something went wrong.