Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions backends/xnnpack/partition/config/generic_node_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import logging
from typing import cast, List, Optional

import numpy as np
import torch
from executorch.backends.xnnpack.partition.config.xnnpack_config import (
ConfigPrecisionType,
Expand Down Expand Up @@ -106,6 +107,17 @@ def __init__(self, **kwargs):
def supported_precision_types(self) -> List[ConfigPrecisionType]:
return [ConfigPrecisionType.FP32, ConfigPrecisionType.STATIC_QUANT]

def check_constraints(self, node: torch.fx.Node, ep: ExportedProgram) -> bool:
if not self.check_common_constraints(node, ep):
return False
# No support for add nodes with alpha != 1
if "alpha" in node.kwargs and not np.isclose(
node.kwargs["alpha"], 1.0, atol=1e-9, rtol=1e-9
):
why(node, reason="Add node doesn't support alpha != 1")
return False
return True


class ReLUConfig(GenericNodePartitionerConfig):
target_name = "relu.default"
Expand Down
24 changes: 24 additions & 0 deletions backends/xnnpack/test/ops/test_add.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,3 +240,27 @@ def forward(self, x, z):
.serialize()
.run_method_and_compare_outputs()
)

class AddWithAlpha(torch.nn.Module):
def forward(self, x, y):
# node with alpha = 1.0 will be partitioned
out1 = torch.add(x, y, alpha=1)
# node with alpha != 1.0 will not be partitioned
out2 = torch.add(x, y, alpha=2)
return out1, out2

def test_add_with_alpha(self):
inputs = (torch.randn(1, 1, 4, 4), torch.randn(1, 1, 4, 4))
(
Tester(self.AddWithAlpha(), inputs)
.export()
.check_count({"torch.ops.aten.add.Tensor": 2})
.to_edge_transform_and_lower()
# unpartitioned node
.check_count({"executorch_exir_dialects_edge__ops_aten_add_Tensor": 1})
# partitioned node
.check_count({"torch.ops.higher_order.executorch_call_delegate": 1})
.to_executorch()
.serialize()
.run_method_and_compare_outputs()
)
Loading