Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 15 additions & 2 deletions backends/qualcomm/quantizer/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import torch

from torch._ops import OpOverload
from torch._subclasses import FakeTensor

from torch.ao.quantization.quantizer import (
QuantizationAnnotation,
Expand Down Expand Up @@ -41,6 +42,18 @@ def decorator(annotator: Callable):

return decorator

def _is_input_float_tensor(node: Node):
"""Check if the input is not a float tensor, so that we can skip quantization for the node
since observers only works with float Tensors
"""
if (
not isinstance(node, Node)
or "val" not in node.meta
or not isinstance(node.meta["val"], FakeTensor)
):
return False
return node.meta["val"].dtype == torch.float32


def _is_annotated(nodes: List[Node]):
"""
Expand Down Expand Up @@ -123,11 +136,11 @@ def annotate_binary(node: Node, quantization_config: QuantizationConfig) -> None

input_qspec_map = {}
input_act0 = node.args[0]
if isinstance(input_act0, Node):
if _is_input_float_tensor(input_act0):
input_qspec_map[input_act0] = input_act_qspec

input_act1 = node.args[1]
if isinstance(input_act1, Node):
if _is_input_float_tensor(input_act1):
input_qspec_map[input_act1] = input_act_qspec

node.meta[QUANT_ANNOTATION_KEY] = QuantizationAnnotation(
Expand Down