Skip to content

[habana] Misc fixes for vision nets #2838

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 2, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 51 additions & 10 deletions lib/Backends/Habana/Habana.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -548,10 +548,10 @@ makeSynPoolParams(llvm::ArrayRef<unsigned_t> kernel,
params->sW = stride[0];
params->sH = stride[1];
// Padding
params->pWbegin = pad[0];
params->pWend = pad[0];
params->pHbegin = pad[1];
params->pHend = pad[1];
params->pHbegin = pad[0];
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lol, whoops.

params->pWbegin = pad[1];
params->pHend = pad[2];
params->pWend = pad[3];
// Dilation
params->dilW = 1;
params->dilH = 1;
Expand Down Expand Up @@ -591,6 +591,16 @@ makeSynSliceAxisParams(unsigned axis, unsigned axes, unsigned outputAxisSize,
return params;
}

static std::unique_ptr<ns_LrnKernel::Params>
makeLrnParams(float alpha, float beta, float knorm, int halfWindowSize) {
auto params = llvm::make_unique<ns_LrnKernel::Params>();
params->alpha = alpha;
params->beta = beta;
params->knorm = knorm;
params->nsize = 2 * halfWindowSize + 1;
return params;
}

static std::unique_ptr<ns_ConstantKernel::Params>
makeConstantParams(float value) {
auto params = llvm::make_unique<ns_ConstantKernel::Params>();
Expand Down Expand Up @@ -733,6 +743,8 @@ HabanaBackend::compile(Function *F, const BackendOptions &opts) const {
std::vector<std::unique_ptr<ns_TileKernel::Params>> tileParams;
std::vector<std::unique_ptr<unsigned>> concatParams;
std::vector<std::unique_ptr<ns_TakeKernel::Params>> takeParams;
std::vector<std::unique_ptr<ns_LrnKernel::Params>> lrnParams;
std::vector<std::unique_ptr<synGEMMParams>> gemmParams;

// Keep references to tensor pointer arrays passed into multi-input nodes
// until the compilation is done.
Expand Down Expand Up @@ -965,12 +977,16 @@ HabanaBackend::compile(Function *F, const BackendOptions &opts) const {
if (MI->getLHS().getType()->isQuantizedType()) {
// Let GEMM run on MME via FullyConnected node.
// MME only runs on quantized types, e.g., int8 or int16.
auto params = llvm::make_unique<synFCParams>();
params->activation.reluEnable = false;
chk(synFullyConnected(tensors[MI->getLHS()].get(),
tensors[MI->getRHS()].get(), nullptr,
tensors[MI].get(), *params, ""));
fcParams.emplace_back(std::move(params));
// The default params are OK - don't transpose A and B
auto params = llvm::make_unique<synGEMMParams>();
std::vector<synTensor> inputs;
inputs.push_back(tensors[MI->getLHS()].get());
inputs.push_back(tensors[MI->getRHS()].get());
chk(synCreateGenericNode(inputs.data(), &tensors[MI].get(),
inputs.size(), 1, nullptr, "gemm",
MI->getName().data(), nullptr, nullptr));
gemmParams.emplace_back(std::move(params));

} else {
std::vector<synTensor> inputs;
inputs.push_back(tensors[MI->getLHS()].get());
Expand Down Expand Up @@ -1015,6 +1031,18 @@ HabanaBackend::compile(Function *F, const BackendOptions &opts) const {
convParams.emplace_back(std::move(params));
break;
}
case Kinded::Kind::LocalResponseNormalizationNodeKind: {
auto *NI = llvm::cast<LocalResponseNormalizationNode>(&I);
std::unique_ptr<ns_LrnKernel::Params> params = makeLrnParams(
NI->getAlpha(), NI->getBeta(), NI->getK(), NI->getHalfWindowSize());

chk(synCreateGenericNode(&tensors[NI->getInput()].get(),
&tensors[NI].get(), 1, 1, (void *)params.get(),
"lrn_f32", NI->getName().str().c_str(), nullptr,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is the datatype intentionally hardcoded? Does this operator not exist for other datatypes? It makes sense that it wouldn't, but I just want to confirm.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good eye - LRN does indeed only exist for f32. We could assert that here, although it'll already be caught by isOpSupported.

nullptr));
lrnParams.emplace_back(std::move(params));
break;
}
case Kinded::Kind::TransposeNodeKind: {
auto *TI = llvm::cast<TransposeNode>(&I);
std::unique_ptr<synTransposeParams> params =
Expand Down Expand Up @@ -1126,6 +1154,14 @@ HabanaBackend::compile(Function *F, const BackendOptions &opts) const {
concatParams.emplace_back(std::move(params));
break;
}
case Kinded::Kind::RescaleQuantizedNodeKind: {
auto *RI = llvm::cast<RescaleQuantizedNode>(&I);
chk(synCreateGenericNode(
&tensors[RI->getInput()].get(), &tensors[RI].get(), 1, 1, nullptr,
getKernelName("requant", RI->getResult().getElementType()).c_str(),
RI->getName().data(), nullptr, nullptr));
break;
}
case Kinded::Kind::SaveNodeKind: {
auto *CI = llvm::cast<SaveNode>(&I);
if (tensors.count(CI)) {
Expand Down Expand Up @@ -1237,7 +1273,11 @@ bool HabanaBackend::isOpSupported(const NodeInfo &NI) const {
case Kinded::Kind::SplatNodeKind:
case Kinded::Kind::SubNodeKind:
case Kinded::Kind::TileNodeKind:
case Kinded::Kind::ConcatNodeKind:
return true;
case Kinded::Kind::RescaleQuantizedNodeKind:
return NI.allInputsAndOutputsHaveSameElemKind(
{ElemKind::Int8QTy, ElemKind::Int16QTy});
default:
return false;
}
Expand Down Expand Up @@ -1273,6 +1313,7 @@ bool HabanaBackend::isOpSupported(const NodeInfo &NI) const {
case Kinded::Kind::TransposeNodeKind:
case Kinded::Kind::SparseLengthsWeightedSumNodeKind:
case Kinded::Kind::FusedRowwiseQuantizedSparseLengthsWeightedSumNodeKind:
case Kinded::Kind::LocalResponseNormalizationNodeKind:
return true;
default:
return false;
Expand Down