Closed
Description
Issue description
torch.bincount
gives an error when given an empty tensor, rather than just returning zero counts like numpy.bincount
. Trips up edge cases when counting filtered data.
Code example
>>> import torch, numpy
>>> numpy.bincount([1]), numpy.bincount([]), numpy.bincount([], minlength=10)
(array([0, 1]), array([], dtype=int64), array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
>>> torch.bincount(torch.LongTensor([]))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: bincount only supports 1-d non-negative integral inputs.
>>> torch.bincount(torch.LongTensor([]), minlength=10)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: bincount only supports 1-d non-negative integral inputs.
Metadata
Metadata
Assignees
Labels
No labels