This repository was archived by the owner on Aug 1, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 128
This repository was archived by the owner on Aug 1, 2025. It is now read-only.
Debug error for vision maskrcnn #170
Copy link
Copy link
Closed
Description
Torchscript error, repro is below
import torch
from torch.nn import *
class FxModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer('_tensor_constant0', torch.zeros([], dtype=torch.int64))
self.register_buffer('_tensor_constant1', torch.zeros([], dtype=torch.int64))
self.register_buffer('_tensor_constant2', torch.zeros([], dtype=torch.int64))
self.register_buffer('_tensor_constant3', torch.zeros([], dtype=torch.int64))
self.register_buffer('_tensor_constant4', torch.zeros([], dtype=torch.int64))
self.register_buffer('_tensor_constant5', torch.zeros([4, 1], dtype=torch.int64))
self.register_buffer('_tensor_constant6', torch.zeros([4, 359613], dtype=torch.int64))
def forward(self, primals_1, primals_2):
view = torch.ops.aten.view(primals_2, [4, 359613]); primals_2 = None
split_with_sizes = torch.ops.aten.split_with_sizes(view, [269952, 67488, 16872, 4218, 1083], 1)
getitem = split_with_sizes[0]
getitem_1 = split_with_sizes[1]
getitem_2 = split_with_sizes[2]
getitem_3 = split_with_sizes[3]
getitem_4 = split_with_sizes[4]; split_with_sizes = None
topk = torch.ops.aten.topk(getitem, 1000, 1); getitem = None
getitem_6 = topk[1]; topk = None
_tensor_constant0 = self._tensor_constant0
add = torch.ops.aten.add(getitem_6, _tensor_constant0); getitem_6 = _tensor_constant0 = None
topk_1 = torch.ops.aten.topk(getitem_1, 1000, 1); getitem_1 = None
getitem_8 = topk_1[1]; topk_1 = None
_tensor_constant1 = self._tensor_constant1
add_1 = torch.ops.aten.add(getitem_8, _tensor_constant1); getitem_8 = _tensor_constant1 = None
topk_2 = torch.ops.aten.topk(getitem_2, 1000, 1); getitem_2 = None
getitem_10 = topk_2[1]; topk_2 = None
_tensor_constant2 = self._tensor_constant2
add_2 = torch.ops.aten.add(getitem_10, _tensor_constant2); getitem_10 = _tensor_constant2 = None
topk_3 = torch.ops.aten.topk(getitem_3, 1000, 1); getitem_3 = None
getitem_12 = topk_3[1]; topk_3 = None
_tensor_constant3 = self._tensor_constant3
add_3 = torch.ops.aten.add(getitem_12, _tensor_constant3); getitem_12 = _tensor_constant3 = None
topk_4 = torch.ops.aten.topk(getitem_4, 1000, 1); getitem_4 = None
getitem_14 = topk_4[1]; topk_4 = None
_tensor_constant4 = self._tensor_constant4
add_4 = torch.ops.aten.add(getitem_14, _tensor_constant4); getitem_14 = _tensor_constant4 = None
cat = torch.ops.aten.cat([add, add_1, add_2, add_3, add_4], 1); add = add_1 = add_2 = add_3 = add_4 = None
_tensor_constant5 = self._tensor_constant5
index = torch.ops.aten.index(view, [_tensor_constant5, cat]); view = _tensor_constant5 = None
_tensor_constant6 = self._tensor_constant6
_tensor_constant5_1 = self._tensor_constant5
index_1 = torch.ops.aten.index(_tensor_constant6, [_tensor_constant5_1, cat]); _tensor_constant6 = _tensor_constant5_1 = None
_tensor_constant5_2 = self._tensor_constant5
index_2 = torch.ops.aten.index(primals_1, [_tensor_constant5_2, cat]); primals_1 = _tensor_constant5_2 = cat = None
sigmoid = torch.ops.aten.sigmoid(index); index = None
select_1 = torch.ops.aten.select(index_2, 0, 1)
select_5 = torch.ops.aten.select(sigmoid, 0, 1)
return [select_1, select_5, ]
sizes = [torch.Size([4, 359613, 4]), torch.Size([1438452, 1])]
dtypes = [torch.float32, torch.float32]
inps = [torch.empty(size, dtype=dtype, device="cuda") for (size, dtype) in zip(sizes, dtypes)]
mod = FxModule().cuda()
ref = mod(*inps)
ts_mod = torch.jit.script(mod)
res = ts_mod(*inps)
Metadata
Metadata
Assignees
Labels
No labels