Skip to content

fix parameter placement #3

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions distributed/embedding_lookup.py
Original file line number Diff line number Diff line change
Expand Up @@ -738,6 +738,7 @@ def to_embedding_location(
feature_table_map=self._feature_table_map,
pooling_mode=self._pooling,
weights_precision=to_sparse_type(config.data_type),
device=device,
**fused_params,
)
)
Expand Down
1 change: 1 addition & 0 deletions distributed/planner/embedding_planner.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,7 @@ def plan(

return to_plan(
[param_info for _, param_info in placed_param_infos],
self._device,
self._world_size,
self._local_size,
)
Expand Down
50 changes: 33 additions & 17 deletions distributed/planner/parameter_sharding.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
import abc
import itertools
import math
from typing import List, Tuple, Optional
from typing import List, Tuple

import torch
from torch.distributed._sharding_spec import EnumerableShardingSpec, ShardMetadata
Expand Down Expand Up @@ -63,34 +63,46 @@ def _rw_shard_table_rows(hash_size: int, world_size: int) -> Tuple[List[int], in
return (local_rows, block_size, last_rank)


def _device_placement(
device: torch.device,
rank: int,
local_size: int,
) -> str:
param_device = device
if device.type == "cuda":
param_device = torch.device("cuda", rank % local_size)
return f"rank:{rank}/{param_device}"


class ParameterShardingFactory(abc.ABC):
@staticmethod
def shard_parameters(
param_info: ParameterInfo,
device: torch.device,
world_size: int,
local_size: Optional[int],
local_size: int,
) -> ParameterSharding:
sharding_option = param_info.sharding_options[0]
sharding_type = sharding_option.sharding_type
if sharding_type == ShardingType.TABLE_WISE.value:
parameter_sharding = TwParameterSharding.shard_parameters(
param_info, world_size, local_size
param_info, device, world_size, local_size
)
elif sharding_type == ShardingType.ROW_WISE.value:
parameter_sharding = RwParameterSharding.shard_parameters(
param_info, world_size, local_size
param_info, device, world_size, local_size
)
elif sharding_type == ShardingType.TABLE_ROW_WISE.value:
parameter_sharding = TwRwParameterSharding.shard_parameters(
param_info, world_size, local_size
param_info, device, world_size, local_size
)
elif sharding_type == ShardingType.COLUMN_WISE.value:
parameter_sharding = CwParameterSharding.shard_parameters(
param_info, world_size, local_size
param_info, device, world_size, local_size
)
elif sharding_type == ShardingType.DATA_PARALLEL.value:
parameter_sharding = DpParameterSharding.shard_parameters(
param_info, world_size, local_size
param_info, device, world_size, local_size
)
else:
raise ValueError(
Expand All @@ -104,8 +116,9 @@ class TwParameterSharding:
def shard_parameters(
cls,
param_info: ParameterInfo,
device: torch.device,
world_size: int,
local_size: Optional[int],
local_size: int,
) -> ParameterSharding:
sharding_option = param_info.sharding_options[0]
tensor = param_info.param
Expand All @@ -118,7 +131,7 @@ def shard_parameters(
tensor.shape[1],
],
shard_offsets=[0, 0],
placement=f"rank:{rank}/cuda:{rank}",
placement=_device_placement(device, rank, local_size),
)
]
return ParameterSharding(
Expand All @@ -134,8 +147,9 @@ class RwParameterSharding:
def shard_parameters(
cls,
param_info: ParameterInfo,
device: torch.device,
world_size: int,
local_size: Optional[int],
local_size: int,
) -> ParameterSharding:
sharding_option = param_info.sharding_options[0]
tensor = param_info.param
Expand All @@ -149,7 +163,7 @@ def shard_parameters(
tensor.shape[1],
],
shard_offsets=[block_size * min(rank, last_rank), 0],
placement=f"rank:{rank}/cuda:{rank}",
placement=_device_placement(device, rank, local_size),
)
for rank in range(world_size)
]
Expand All @@ -166,8 +180,9 @@ class TwRwParameterSharding:
def shard_parameters(
cls,
param_info: ParameterInfo,
device: torch.device,
world_size: int,
local_size: Optional[int],
local_size: int,
) -> ParameterSharding:
sharding_option = param_info.sharding_options[0]
tensor = param_info.param
Expand All @@ -179,7 +194,6 @@ def shard_parameters(
hash_size=tensor.shape[0],
embedding_dim=tensor.shape[1],
world_size=world_size,
# pyre-fixme [6]
local_size=local_size,
)
shards = [
Expand All @@ -189,7 +203,7 @@ def shard_parameters(
local_cols[rank],
],
shard_offsets=[local_row_offsets[rank], 0],
placement=f"rank:{rank}/cuda:{rank}",
placement=_device_placement(device, rank, local_size),
)
for rank in range(table_node * local_size, (table_node + 1) * local_size)
]
Expand All @@ -207,8 +221,9 @@ class CwParameterSharding:
def shard_parameters(
cls,
param_info: ParameterInfo,
device: torch.device,
world_size: int,
local_size: Optional[int],
local_size: int,
) -> ParameterSharding:
sharding_option = param_info.sharding_options[0]
tensor = param_info.param
Expand All @@ -235,7 +250,7 @@ def shard_parameters(
merged_sizes[i],
],
shard_offsets=[0, offsets[i]],
placement=f"rank:{rank}/cuda:{rank}",
placement=_device_placement(device, rank, local_size),
)
for i, rank in enumerate(merged_ranks)
]
Expand All @@ -252,8 +267,9 @@ class DpParameterSharding:
def shard_parameters(
cls,
param_info: ParameterInfo,
device: torch.device,
world_size: int,
local_size: Optional[int],
local_size: int,
) -> ParameterSharding:
sharding_option = param_info.sharding_options[0]
return ParameterSharding(
Expand Down
4 changes: 3 additions & 1 deletion distributed/planner/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,14 +214,16 @@ def param_sort_key(

def to_plan(
parameter_infos: List[ParameterInfo],
device: torch.device,
world_size: int,
local_size: Optional[int],
local_size: int,
) -> ShardingPlan:
plan = {}
for parameter_info in parameter_infos:
shards = plan.get(parameter_info.prefix, {})
shards[parameter_info.name] = ParameterShardingFactory.shard_parameters(
param_info=parameter_info,
device=device,
world_size=world_size,
local_size=local_size,
)
Expand Down