Skip to content

Commit d85095c

Browse files
datumboxfacebook-github-bot
authored andcommitted
[fbsync] Added typing annotations to models/video (#4229)
Summary: * style: Added typing to models/video * style: Fixed typing * style: Fixed typing * style: Fixed typing * refactor: Removed default value for stem * docs: Fixed docstring of VideoResNet * style: Refactored typing * docs: Fixed docstring * style: Fixed typing * docs: Specified docstring * typing: Fixed tying * docs: Fixed docstring * Undoing change. Reviewed By: fmassa Differential Revision: D30525888 fbshipit-source-id: 0015be22677c06f07d5d8f3c2e46fe05c2a455e4
1 parent e8da79f commit d85095c

File tree

1 file changed

+78
-42
lines changed

1 file changed

+78
-42
lines changed

torchvision/models/video/resnet.py

Lines changed: 78 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,6 @@
1+
from torch import Tensor
12
import torch.nn as nn
3+
from typing import Tuple, Optional, Callable, List, Type, Any, Union
24

35
from ..._internally_replaced_utils import load_state_dict_from_url
46

@@ -13,12 +15,14 @@
1315

1416

1517
class Conv3DSimple(nn.Conv3d):
16-
def __init__(self,
17-
in_planes,
18-
out_planes,
19-
midplanes=None,
20-
stride=1,
21-
padding=1):
18+
def __init__(
19+
self,
20+
in_planes: int,
21+
out_planes: int,
22+
midplanes: Optional[int] = None,
23+
stride: int = 1,
24+
padding: int = 1
25+
) -> None:
2226

2327
super(Conv3DSimple, self).__init__(
2428
in_channels=in_planes,
@@ -29,18 +33,20 @@ def __init__(self,
2933
bias=False)
3034

3135
@staticmethod
32-
def get_downsample_stride(stride):
36+
def get_downsample_stride(stride: int) -> Tuple[int, int, int]:
3337
return stride, stride, stride
3438

3539

3640
class Conv2Plus1D(nn.Sequential):
3741

38-
def __init__(self,
39-
in_planes,
40-
out_planes,
41-
midplanes,
42-
stride=1,
43-
padding=1):
42+
def __init__(
43+
self,
44+
in_planes: int,
45+
out_planes: int,
46+
midplanes: int,
47+
stride: int = 1,
48+
padding: int = 1
49+
) -> None:
4450
super(Conv2Plus1D, self).__init__(
4551
nn.Conv3d(in_planes, midplanes, kernel_size=(1, 3, 3),
4652
stride=(1, stride, stride), padding=(0, padding, padding),
@@ -52,18 +58,20 @@ def __init__(self,
5258
bias=False))
5359

5460
@staticmethod
55-
def get_downsample_stride(stride):
61+
def get_downsample_stride(stride: int) -> Tuple[int, int, int]:
5662
return stride, stride, stride
5763

5864

5965
class Conv3DNoTemporal(nn.Conv3d):
6066

61-
def __init__(self,
62-
in_planes,
63-
out_planes,
64-
midplanes=None,
65-
stride=1,
66-
padding=1):
67+
def __init__(
68+
self,
69+
in_planes: int,
70+
out_planes: int,
71+
midplanes: Optional[int] = None,
72+
stride: int = 1,
73+
padding: int = 1
74+
) -> None:
6775

6876
super(Conv3DNoTemporal, self).__init__(
6977
in_channels=in_planes,
@@ -74,15 +82,22 @@ def __init__(self,
7482
bias=False)
7583

7684
@staticmethod
77-
def get_downsample_stride(stride):
85+
def get_downsample_stride(stride: int) -> Tuple[int, int, int]:
7886
return 1, stride, stride
7987

8088

8189
class BasicBlock(nn.Module):
8290

8391
expansion = 1
8492

85-
def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None):
93+
def __init__(
94+
self,
95+
inplanes: int,
96+
planes: int,
97+
conv_builder: Callable[..., nn.Module],
98+
stride: int = 1,
99+
downsample: Optional[nn.Module] = None,
100+
) -> None:
86101
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes)
87102

88103
super(BasicBlock, self).__init__()
@@ -99,7 +114,7 @@ def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None):
99114
self.downsample = downsample
100115
self.stride = stride
101116

102-
def forward(self, x):
117+
def forward(self, x: Tensor) -> Tensor:
103118
residual = x
104119

105120
out = self.conv1(x)
@@ -116,7 +131,14 @@ def forward(self, x):
116131
class Bottleneck(nn.Module):
117132
expansion = 4
118133

119-
def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None):
134+
def __init__(
135+
self,
136+
inplanes: int,
137+
planes: int,
138+
conv_builder: Callable[..., nn.Module],
139+
stride: int = 1,
140+
downsample: Optional[nn.Module] = None,
141+
) -> None:
120142

121143
super(Bottleneck, self).__init__()
122144
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes)
@@ -143,7 +165,7 @@ def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None):
143165
self.downsample = downsample
144166
self.stride = stride
145167

146-
def forward(self, x):
168+
def forward(self, x: Tensor) -> Tensor:
147169
residual = x
148170

149171
out = self.conv1(x)
@@ -162,7 +184,7 @@ def forward(self, x):
162184
class BasicStem(nn.Sequential):
163185
"""The default conv-batchnorm-relu stem
164186
"""
165-
def __init__(self):
187+
def __init__(self) -> None:
166188
super(BasicStem, self).__init__(
167189
nn.Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2),
168190
padding=(1, 3, 3), bias=False),
@@ -173,7 +195,7 @@ def __init__(self):
173195
class R2Plus1dStem(nn.Sequential):
174196
"""R(2+1)D stem is different than the default one as it uses separated 3D convolution
175197
"""
176-
def __init__(self):
198+
def __init__(self) -> None:
177199
super(R2Plus1dStem, self).__init__(
178200
nn.Conv3d(3, 45, kernel_size=(1, 7, 7),
179201
stride=(1, 2, 2), padding=(0, 3, 3),
@@ -189,16 +211,23 @@ def __init__(self):
189211

190212
class VideoResNet(nn.Module):
191213

192-
def __init__(self, block, conv_makers, layers,
193-
stem, num_classes=400,
194-
zero_init_residual=False):
214+
def __init__(
215+
self,
216+
block: Type[Union[BasicBlock, Bottleneck]],
217+
conv_makers: List[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]],
218+
layers: List[int],
219+
stem: Callable[..., nn.Module],
220+
num_classes: int = 400,
221+
zero_init_residual: bool = False,
222+
) -> None:
195223
"""Generic resnet video generator.
196224
197225
Args:
198-
block (nn.Module): resnet building block
199-
conv_makers (list(functions)): generator function for each layer
226+
block (Type[Union[BasicBlock, Bottleneck]]): resnet building block
227+
conv_makers (List[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]]): generator
228+
function for each layer
200229
layers (List[int]): number of blocks per layer
201-
stem (nn.Module, optional): Resnet stem, if None, defaults to conv-bn-relu. Defaults to None.
230+
stem (Callable[..., nn.Module]): module specifying the ResNet stem.
202231
num_classes (int, optional): Dimension of the final FC layer. Defaults to 400.
203232
zero_init_residual (bool, optional): Zero init bottleneck residual BN. Defaults to False.
204233
"""
@@ -221,9 +250,9 @@ def __init__(self, block, conv_makers, layers,
221250
if zero_init_residual:
222251
for m in self.modules():
223252
if isinstance(m, Bottleneck):
224-
nn.init.constant_(m.bn3.weight, 0)
253+
nn.init.constant_(m.bn3.weight, 0) # type: ignore[union-attr, arg-type]
225254

226-
def forward(self, x):
255+
def forward(self, x: Tensor) -> Tensor:
227256
x = self.stem(x)
228257

229258
x = self.layer1(x)
@@ -238,7 +267,14 @@ def forward(self, x):
238267

239268
return x
240269

241-
def _make_layer(self, block, conv_builder, planes, blocks, stride=1):
270+
def _make_layer(
271+
self,
272+
block: Type[Union[BasicBlock, Bottleneck]],
273+
conv_builder: Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]],
274+
planes: int,
275+
blocks: int,
276+
stride: int = 1
277+
) -> nn.Sequential:
242278
downsample = None
243279

244280
if stride != 1 or self.inplanes != planes * block.expansion:
@@ -257,7 +293,7 @@ def _make_layer(self, block, conv_builder, planes, blocks, stride=1):
257293

258294
return nn.Sequential(*layers)
259295

260-
def _initialize_weights(self):
296+
def _initialize_weights(self) -> None:
261297
for m in self.modules():
262298
if isinstance(m, nn.Conv3d):
263299
nn.init.kaiming_normal_(m.weight, mode='fan_out',
@@ -272,7 +308,7 @@ def _initialize_weights(self):
272308
nn.init.constant_(m.bias, 0)
273309

274310

275-
def _video_resnet(arch, pretrained=False, progress=True, **kwargs):
311+
def _video_resnet(arch: str, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VideoResNet:
276312
model = VideoResNet(**kwargs)
277313

278314
if pretrained:
@@ -282,7 +318,7 @@ def _video_resnet(arch, pretrained=False, progress=True, **kwargs):
282318
return model
283319

284320

285-
def r3d_18(pretrained=False, progress=True, **kwargs):
321+
def r3d_18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VideoResNet:
286322
"""Construct 18 layer Resnet3D model as in
287323
https://arxiv.org/abs/1711.11248
288324
@@ -302,7 +338,7 @@ def r3d_18(pretrained=False, progress=True, **kwargs):
302338
stem=BasicStem, **kwargs)
303339

304340

305-
def mc3_18(pretrained=False, progress=True, **kwargs):
341+
def mc3_18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VideoResNet:
306342
"""Constructor for 18 layer Mixed Convolution network as in
307343
https://arxiv.org/abs/1711.11248
308344
@@ -316,12 +352,12 @@ def mc3_18(pretrained=False, progress=True, **kwargs):
316352
return _video_resnet('mc3_18',
317353
pretrained, progress,
318354
block=BasicBlock,
319-
conv_makers=[Conv3DSimple] + [Conv3DNoTemporal] * 3,
355+
conv_makers=[Conv3DSimple] + [Conv3DNoTemporal] * 3, # type: ignore[list-item]
320356
layers=[2, 2, 2, 2],
321357
stem=BasicStem, **kwargs)
322358

323359

324-
def r2plus1d_18(pretrained=False, progress=True, **kwargs):
360+
def r2plus1d_18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VideoResNet:
325361
"""Constructor for the 18 layer deep R(2+1)D network as in
326362
https://arxiv.org/abs/1711.11248
327363

0 commit comments

Comments
 (0)