Description
🐛 Describe the bug
I want to install (via conda) torchvision without installing the ffmpeg that comes with it. I already have a hardware accelerated ffmpeg build on my computer and would like to keep using it. can you give me some idea on how I can do this with torchvision?
What I tried:
I tried to build from source but that requires pytorch nightly which clashes with other libraries that depend on pytorch 0.12 so I can't use pytorch nightly.
Versions
yTorch version: 1.12.1
Is debug build: False
CUDA used to build PyTorch: 11.3
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.5 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang version: Could not collect
CMake version: version 3.14.0
Libc version: glibc-2.27
Python version: 3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-48-generic-x86_64-with-glibc2.27
Is CUDA available: True
CUDA runtime version: 11.3.122
GPU models and configuration:
GPU 0: NVIDIA RTX A5000
GPU 1: NVIDIA RTX A5000
GPU 2: NVIDIA RTX A5000
GPU 3: NVIDIA RTX A5000
Nvidia driver version: 470.141.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.0.4
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.0.4
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
Versions of relevant libraries:
[pip3] numpy==1.23.3
[pip3] pytorch-lightning==1.6.0
[pip3] pytorchvideo==0.1.5
[pip3] torch==1.13.0.dev20220914+cu113
[pip3] torchaudio==0.12.1
[pip3] torchmetrics==0.7.3
[pip3] torchvision==0.13.1
[conda] blas 1.0 mkl
[conda] cudatoolkit 11.3.1 h2bc3f7f_2
[conda] mkl 2021.4.0 h06a4308_640
[conda] mkl-service 2.4.0 py39h7f8727e_0
[conda] mkl_fft 1.3.1 py39hd3c417c_0
[conda] mkl_random 1.2.2 py39h51133e4_0
[conda] numpy 1.23.3 pypi_0 pypi
[conda] numpy-base 1.23.1 py39ha15fc14_0
[conda] pytorch 1.12.1 py3.9_cuda11.3_cudnn8.3.2_0 pytorch
[conda] pytorch-lightning 1.6.0 pypi_0 pypi
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] pytorchvideo 0.1.5 pypi_0 pypi
[conda] torch 1.13.0.dev20220914+cu113 pypi_0 pypi
[conda] torchaudio 0.12.1 py39_cu113 pytorch
[conda] torchmetrics 0.7.3 pypi_0 pypi
[conda] torchvision 0.13.1 pypi_0 pypi