You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I tried to download pretrained efficientnet_b3 model using following code:
model_ft = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.IMAGENET1K_V1)
There's no issue if I ran by PyCharm. Torchvision version: 0.15.2
But when I ran same code with Jupter Notebook (AWS server) torchvision version same as 0.15.2, I got ###### last line error message as following:
RuntimeError: invalid hash value (expected "cf984f9c", got "b3899882250c22946d0229d266049fcd133c169233530b36b9ffa7983988362f")
Versions
I tried to download pretrained efficientnet_b3 model using following code:
model_ft = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.IMAGENET1K_V1)
There's no issue if I ran by PyCharm. Torchvision version: 0.15.2
But when I ran same code with Jupter Notebook (AWS server) torchvision version same as 0.15.2, I got ###### last line error message as following:
RuntimeError: invalid hash value (expected "cf984f9c", got "b3899882250c22946d0229d266049fcd133c169233530b36b9ffa7983988362f")
### Full messages after the code running as following:
Cell In[33], line 2 1#efficientnet_b3----> 2model_ft =models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.IMAGENET1K_V1)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/_utils.py:142, in kwonly_to_pos_or_kw..wrapper(*args, **kwargs) 135warnings.warn(
136f"Using {sequence_to_str(tuple(keyword_only_kwargs.keys()), separate_last='and ')} as positional " 137f"parameter(s) is deprecated since 0.13 and may be removed in the future. Please use keyword parameter(s) " 138f"instead." 139)
140kwargs.update(keyword_only_kwargs)
--> 142returnfn(*args, **kwargs)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/_utils.py:228, in handle_legacy_interface..outer_wrapper..inner_wrapper(*args, **kwargs) 225delkwargs[pretrained_param]
226kwargs[weights_param] =default_weights_arg
--> 228returnbuilder(*args, **kwargs)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/efficientnet.py:863, in efficientnet_b3(weights, progress, **kwargs) 860weights =EfficientNet_B3_Weights.verify(weights)
862inverted_residual_setting, last_channel =_efficientnet_conf("efficientnet_b3", width_mult=1.2, depth_mult=1.4)
--> 863return_efficientnet( 864 inverted_residual_setting, 865 kwargs.pop("dropout", 0.3), 866 last_channel, 867 weights, 868 progress, 869 **kwargs, 870)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/efficientnet.py:360, in _efficientnet(inverted_residual_setting, dropout, last_channel, weights, progress, **kwargs) 357model =EfficientNet(inverted_residual_setting, dropout, last_channel=last_channel, **kwargs)
359ifweights isnotNone:
--> 360model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
362returnmodel
File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/_api.py:90, in WeightsEnum.get_state_dict(self, *args, **kwargs) 89defget_state_dict(self, *args: Any, **kwargs: Any) ->Mapping[str, Any]:
---> 90returnload_state_dict_from_url(self.url, *args, **kwargs)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/hub.py:766, in load_state_dict_from_url(url, model_dir, map_location, progress, check_hash, file_name, weights_only) 764r =HASH_REGEX.search(filename) # r is Optional[Match[str]] 765hash_prefix =r.group(1) ifr elseNone--> 766download_url_to_file(url, cached_file, hash_prefix, progress=progress) 768if_is_legacy_zip_format(cached_file):
769return_legacy_zip_load(cached_file, model_dir, map_location, weights_only)
File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/hub.py:663, in download_url_to_file(url, dst, hash_prefix, progress) 661digest =sha256.hexdigest()
662ifdigest[:len(hash_prefix)] !=hash_prefix:
--> 663raiseRuntimeError(f'invalid hash value (expected "{hash_prefix}", got "{digest}")')
664shutil.move(f.name, dst)
665finally:
RuntimeError: invalid hash value (expected "cf984f9c", got "b3899882250c22946d0229d266049fcd133c169233530b36b9ffa7983988362f")
The text was updated successfully, but these errors were encountered:
🐛 Describe the bug
I tried to download pretrained efficientnet_b3 model using following code:
model_ft = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.IMAGENET1K_V1)
There's no issue if I ran by PyCharm. Torchvision version: 0.15.2
But when I ran same code with Jupter Notebook (AWS server) torchvision version same as 0.15.2, I got ###### last line error message as following:
RuntimeError: invalid hash value (expected "cf984f9c", got "b3899882250c22946d0229d266049fcd133c169233530b36b9ffa7983988362f")
Versions
I tried to download pretrained efficientnet_b3 model using following code:
model_ft = models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.IMAGENET1K_V1)
There's no issue if I ran by PyCharm. Torchvision version: 0.15.2
But when I ran same code with Jupter Notebook (AWS server) torchvision version same as 0.15.2, I got ###### last line error message as following:
RuntimeError: invalid hash value (expected "cf984f9c", got "b3899882250c22946d0229d266049fcd133c169233530b36b9ffa7983988362f")
### Full messages after the code running as following:
Cell In[33], line 2 1#efficientnet_b3----> 2model_ft =models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.IMAGENET1K_V1)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/_utils.py:142, in kwonly_to_pos_or_kw..wrapper(*args, **kwargs) 135warnings.warn(
136f"Using {sequence_to_str(tuple(keyword_only_kwargs.keys()), separate_last='and ')} as positional " 137f"parameter(s) is deprecated since 0.13 and may be removed in the future. Please use keyword parameter(s) " 138f"instead." 139)
140kwargs.update(keyword_only_kwargs)
--> 142returnfn(*args, **kwargs)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/_utils.py:228, in handle_legacy_interface..outer_wrapper..inner_wrapper(*args, **kwargs) 225delkwargs[pretrained_param]
226kwargs[weights_param] =default_weights_arg
--> 228returnbuilder(*args, **kwargs)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/efficientnet.py:863, in efficientnet_b3(weights, progress, **kwargs) 860weights =EfficientNet_B3_Weights.verify(weights)
862inverted_residual_setting, last_channel =_efficientnet_conf("efficientnet_b3", width_mult=1.2, depth_mult=1.4)
--> 863return_efficientnet( 864 inverted_residual_setting, 865 kwargs.pop("dropout", 0.3), 866 last_channel, 867 weights, 868 progress, 869 **kwargs, 870)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/efficientnet.py:360, in _efficientnet(inverted_residual_setting, dropout, last_channel, weights, progress, **kwargs) 357model =EfficientNet(inverted_residual_setting, dropout, last_channel=last_channel, **kwargs)
359ifweights isnotNone:
--> 360model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
362returnmodel
File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torchvision/models/_api.py:90, in WeightsEnum.get_state_dict(self, *args, **kwargs) 89defget_state_dict(self, *args: Any, **kwargs: Any) ->Mapping[str, Any]:
---> 90returnload_state_dict_from_url(self.url, *args, **kwargs)File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/hub.py:766, in load_state_dict_from_url(url, model_dir, map_location, progress, check_hash, file_name, weights_only) 764r =HASH_REGEX.search(filename) # r is Optional[Match[str]] 765hash_prefix =r.group(1) ifr elseNone--> 766download_url_to_file(url, cached_file, hash_prefix, progress=progress) 768if_is_legacy_zip_format(cached_file):
769return_legacy_zip_load(cached_file, model_dir, map_location, weights_only)
File ~/anaconda3/envs/pytorch_p310/lib/python3.10/site-packages/torch/hub.py:663, in download_url_to_file(url, dst, hash_prefix, progress) 661digest =sha256.hexdigest()
662ifdigest[:len(hash_prefix)] !=hash_prefix:
--> 663raiseRuntimeError(f'invalid hash value (expected "{hash_prefix}", got "{digest}")')
664shutil.move(f.name, dst)
665finally:
RuntimeError: invalid hash value (expected "cf984f9c", got "b3899882250c22946d0229d266049fcd133c169233530b36b9ffa7983988362f")
The text was updated successfully, but these errors were encountered: