Skip to content

Added annotation typing to vgg #2861

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Oct 27, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 22 additions & 15 deletions torchvision/models/vgg.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import torch
import torch.nn as nn
from .utils import load_state_dict_from_url
from typing import Union, List, Dict, Any, cast


__all__ = [
Expand All @@ -23,7 +24,12 @@

class VGG(nn.Module):

def __init__(self, features, num_classes=1000, init_weights=True):
def __init__(
self,
features: nn.Module,
num_classes: int = 1000,
init_weights: bool = True
) -> None:
super(VGG, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
Expand All @@ -39,14 +45,14 @@ def __init__(self, features, num_classes=1000, init_weights=True):
if init_weights:
self._initialize_weights()

def forward(self, x):
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x

def _initialize_weights(self):
def _initialize_weights(self) -> None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
Expand All @@ -60,13 +66,14 @@ def _initialize_weights(self):
nn.init.constant_(m.bias, 0)


def make_layers(cfg, batch_norm=False):
layers = []
def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential:
layers: List[nn.Module] = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
v = cast(int, v)
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
Expand All @@ -76,15 +83,15 @@ def make_layers(cfg, batch_norm=False):
return nn.Sequential(*layers)


cfgs = {
cfgs: Dict[str, List[Union[str, int]]] = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs):
def _vgg(arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG:
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
Expand All @@ -95,7 +102,7 @@ def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs):
return model


def vgg11(pretrained=False, progress=True, **kwargs):
def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 11-layer model (configuration "A") from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

Expand All @@ -106,7 +113,7 @@ def vgg11(pretrained=False, progress=True, **kwargs):
return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs)


def vgg11_bn(pretrained=False, progress=True, **kwargs):
def vgg11_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 11-layer model (configuration "A") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

Expand All @@ -117,7 +124,7 @@ def vgg11_bn(pretrained=False, progress=True, **kwargs):
return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs)


def vgg13(pretrained=False, progress=True, **kwargs):
def vgg13(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 13-layer model (configuration "B")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

Expand All @@ -128,7 +135,7 @@ def vgg13(pretrained=False, progress=True, **kwargs):
return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs)


def vgg13_bn(pretrained=False, progress=True, **kwargs):
def vgg13_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 13-layer model (configuration "B") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

Expand All @@ -139,7 +146,7 @@ def vgg13_bn(pretrained=False, progress=True, **kwargs):
return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs)


def vgg16(pretrained=False, progress=True, **kwargs):
def vgg16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 16-layer model (configuration "D")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

Expand All @@ -150,7 +157,7 @@ def vgg16(pretrained=False, progress=True, **kwargs):
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)


def vgg16_bn(pretrained=False, progress=True, **kwargs):
def vgg16_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 16-layer model (configuration "D") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

Expand All @@ -161,7 +168,7 @@ def vgg16_bn(pretrained=False, progress=True, **kwargs):
return _vgg('vgg16_bn', 'D', True, pretrained, progress, **kwargs)


def vgg19(pretrained=False, progress=True, **kwargs):
def vgg19(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 19-layer model (configuration "E")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

Expand All @@ -172,7 +179,7 @@ def vgg19(pretrained=False, progress=True, **kwargs):
return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs)


def vgg19_bn(pretrained=False, progress=True, **kwargs):
def vgg19_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
r"""VGG 19-layer model (configuration 'E') with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

Expand Down