Skip to content

Invert Transform #3104

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions test/test_functional_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -862,6 +862,21 @@ def test_gaussian_blur(self):
msg="{}, {}".format(ksize, sigma)
)

def test_invert(self):
script_invert = torch.jit.script(F.invert)

img_tensor, pil_img = self._create_data(16, 18, device=self.device)
inverted_img = F.invert(img_tensor)
inverted_pil_img = F.invert(pil_img)
self.compareTensorToPIL(inverted_img, inverted_pil_img)

# scriptable function test
inverted_img_script = script_invert(img_tensor)
self.assertTrue(inverted_img.equal(inverted_img_script))

batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
self._test_fn_on_batch(batch_tensors, F.invert)


@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):
Expand Down
32 changes: 32 additions & 0 deletions test/test_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1749,6 +1749,38 @@ def test_gaussian_blur_asserts(self):
with self.assertRaisesRegex(ValueError, r"sigma should be a single number or a list/tuple with length 2"):
transforms.GaussianBlur(3, "sigma_string")

@unittest.skipIf(stats is None, 'scipy.stats not available')
def test_random_invert(self):
random_state = random.getstate()
random.seed(42)
img = transforms.ToPILImage()(torch.rand(3, 10, 10))
inv_img = F.invert(img)

num_samples = 250
num_inverts = 0
for _ in range(num_samples):
out = transforms.RandomInvert()(img)
if out == inv_img:
num_inverts += 1

p_value = stats.binom_test(num_inverts, num_samples, p=0.5)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)

num_samples = 250
num_inverts = 0
for _ in range(num_samples):
out = transforms.RandomInvert(p=0.7)(img)
if out == inv_img:
num_inverts += 1

p_value = stats.binom_test(num_inverts, num_samples, p=0.7)
random.setstate(random_state)
self.assertGreater(p_value, 0.0001)

# Checking if RandomInvert can be printed as string
transforms.RandomInvert().__repr__()


if __name__ == '__main__':
unittest.main()
3 changes: 3 additions & 0 deletions test/test_transforms_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,9 @@ def test_random_horizontal_flip(self):
def test_random_vertical_flip(self):
self._test_op('vflip', 'RandomVerticalFlip')

def test_random_invert(self):
self._test_op('invert', 'RandomInvert')

def test_color_jitter(self):

tol = 1.0 + 1e-10
Expand Down
18 changes: 18 additions & 0 deletions torchvision/transforms/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -1178,3 +1178,21 @@ def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[floa
if not isinstance(img, torch.Tensor):
output = to_pil_image(output)
return output


def invert(img: Tensor) -> Tensor:
"""Invert the colors of a PIL Image or torch Tensor.

Args:
img (PIL Image or Tensor): Image to have its colors inverted.
If img is a Tensor, it is expected to be in [..., H, W] format,
where ... means it can have an arbitrary number of trailing
dimensions.

Returns:
PIL Image: Color inverted image.
"""
if not isinstance(img, torch.Tensor):
return F_pil.invert(img)

return F_t.invert(img)
20 changes: 20 additions & 0 deletions torchvision/transforms/functional_pil.py
Original file line number Diff line number Diff line change
Expand Up @@ -606,3 +606,23 @@ def to_grayscale(img, num_output_channels):
raise ValueError('num_output_channels should be either 1 or 3')

return img


@torch.jit.unused
def invert(img):
"""PRIVATE METHOD. Invert the colors of an image.

.. warning::

Module ``transforms.functional_pil`` is private and should not be used in user application.
Please, consider instead using methods from `transforms.functional` module.

Args:
img (PIL Image): Image to have its colors inverted.

Returns:
PIL Image: Color inverted image Tensor.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return ImageOps.invert(img)
27 changes: 27 additions & 0 deletions torchvision/transforms/functional_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -1179,3 +1179,30 @@ def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: List[float]) -> Te

img = _cast_squeeze_out(img, need_cast, need_squeeze, out_dtype)
return img


def invert(img: Tensor) -> Tensor:
"""PRIVATE METHOD. Invert the colors of a grayscale or RGB image.

.. warning::``

Module ``transforms.functional_tensor`` is private and should not be used in user application.
Please, consider instead using methods from `transforms.functional` module.

Args:
img (Tensor): Image to have its colors inverted in the form [C, H, W].

Returns:
Tensor: Color inverted image Tensor.
"""
if not _is_tensor_a_torch_image(img):
raise TypeError('tensor is not a torch image.')

if img.ndim < 3:
raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))

_assert_channels(img, [1, 3])

bound = 1.0 if img.is_floating_point() else 255.0
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
return (bound - img.to(dtype)).to(img.dtype)
42 changes: 41 additions & 1 deletion torchvision/transforms/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
"CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
"RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
"LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
"RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode"]
"RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert"]


class Compose:
Expand Down Expand Up @@ -1699,3 +1699,43 @@ def _setup_angle(x, name, req_sizes=(2, )):
_check_sequence_input(x, name, req_sizes)

return [float(d) for d in x]


class RandomInvert(torch.nn.Module):
"""Inverts the colors of the given image randomly with a given probability.
The image can be a PIL Image or a torch Tensor, in which case it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading
dimensions

Args:
p (float): probability of the image being color inverted. Default value is 0.5
"""

def __init__(self, p=0.5):
super().__init__()
self.p = p

@staticmethod
def get_params() -> float:
"""Choose value for random color inversion.

Returns:
float: Random value which is used to determine whether the random color inversion
should occur.
"""
return torch.rand(1).item()

def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be inverted.

Returns:
PIL Image or Tensor: Randomly color inverted image.
"""
if self.get_params() < self.p:
return F.invert(img)
return img

def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)