Skip to content

Solarize Transform #3112

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions test/test_functional_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -884,6 +884,26 @@ def test_posterize(self):
dts=(None,)
)

def test_solarize(self):
self._test_adjust_fn(
F.solarize,
F_pil.solarize,
F_t.solarize,
[{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]],
tol=1.0,
agg_method="max",
dts=(None,)
)
self._test_adjust_fn(
F.solarize,
lambda img, threshold: F_pil.solarize(img, 255 * threshold),
F_t.solarize,
[{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]],
tol=1.0,
agg_method="max",
dts=(torch.float32, torch.float64)
)


@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):
Expand Down
8 changes: 8 additions & 0 deletions test/test_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -1787,6 +1787,14 @@ def test_random_posterize(self):
[{"bits": 4}]
)

@unittest.skipIf(stats is None, 'scipy.stats not available')
def test_random_solarize(self):
self._test_randomness(
F.solarize,
transforms.RandomSolarize,
[{"threshold": 192}]
)


if __name__ == '__main__':
unittest.main()
6 changes: 6 additions & 0 deletions test/test_transforms_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,12 @@ def test_random_posterize(self):
'posterize', 'RandomPosterize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
)

def test_random_solarize(self):
fn_kwargs = meth_kwargs = {"threshold": 192.0}
self._test_op(
'solarize', 'RandomSolarize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
)

def test_color_jitter(self):

tol = 1.0 + 1e-10
Expand Down
24 changes: 21 additions & 3 deletions torchvision/transforms/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -1203,9 +1203,9 @@ def posterize(img: Tensor, bits: int) -> Tensor:

Args:
img (PIL Image or Tensor): Image to have its colors inverted.
If img is a Tensor, it is expected to be in [..., H, W] format,
where ... means it can have an arbitrary number of trailing
dimensions.
If img is a Tensor, it should be of type torch.uint8 and
it is expected to be in [..., H, W] format, where ... means
it can have an arbitrary number of trailing dimensions.
bits (int): The number of bits to keep for each channel (0-8).
Returns:
PIL Image: Posterized image.
Expand All @@ -1217,3 +1217,21 @@ def posterize(img: Tensor, bits: int) -> Tensor:
return F_pil.posterize(img, bits)

return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
"""Solarize a PIL Image or torch Tensor by inverting all pixel values above a threshold.

Args:
img (PIL Image or Tensor): Image to have its colors inverted.
If img is a Tensor, it is expected to be in [..., H, W] format,
where ... means it can have an arbitrary number of trailing
dimensions.
threshold (float): All pixels equal or above this value are inverted.
Returns:
PIL Image: Solarized image.
"""
if not isinstance(img, torch.Tensor):
return F_pil.solarize(img, threshold)

return F_t.solarize(img, threshold)
7 changes: 7 additions & 0 deletions torchvision/transforms/functional_pil.py
Original file line number Diff line number Diff line change
Expand Up @@ -620,3 +620,10 @@ def posterize(img, bits):
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return ImageOps.posterize(img, bits)


@torch.jit.unused
def solarize(img, threshold):
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return ImageOps.solarize(img, threshold)
21 changes: 20 additions & 1 deletion torchvision/transforms/functional_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -1192,7 +1192,7 @@ def invert(img: Tensor) -> Tensor:

bound = 1.0 if img.is_floating_point() else 255.0
dtype = img.dtype if torch.is_floating_point(img) else torch.float32
return (bound - img.to(dtype)).to(img.dtype)
return (bound - img.to(dtype)).clamp(0, bound).to(img.dtype)


def posterize(img: Tensor, bits: int) -> Tensor:
Expand All @@ -1207,3 +1207,22 @@ def posterize(img: Tensor, bits: int) -> Tensor:
_assert_channels(img, [1, 3])
mask = -int(2**(8 - bits)) # JIT-friendly for: ~(2 ** (8 - bits) - 1)
return img & mask


def solarize(img: Tensor, threshold: float) -> Tensor:
if not _is_tensor_a_torch_image(img):
raise TypeError('tensor is not a torch image.')

if img.ndim < 3:
raise TypeError("Input image tensor should have at least 3 dimensions, but found {}".format(img.ndim))

_assert_channels(img, [1, 3])

bound = 1.0 if img.is_floating_point() else 255.0
dtype = img.dtype if torch.is_floating_point(img) else torch.float32

result = img.clone().view(-1)
invert_idx = torch.where(result >= threshold)[0]
result[invert_idx] = (bound - result[invert_idx].to(dtype=dtype)).clamp(0, bound).to(dtype=img.dtype)

return result.view(img.shape)
49 changes: 46 additions & 3 deletions torchvision/transforms/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,8 @@
"CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
"RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
"LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
"RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize"]
"RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
"RandomSolarize"]


class Compose:
Expand Down Expand Up @@ -1705,7 +1706,7 @@ class RandomInvert(torch.nn.Module):
"""Inverts the colors of the given image randomly with a given probability.
The image can be a PIL Image or a torch Tensor, in which case it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading
dimensions
dimensions.

Args:
p (float): probability of the image being color inverted. Default value is 0.5
Expand Down Expand Up @@ -1745,7 +1746,7 @@ class RandomPosterize(torch.nn.Module):
"""Posterize the image randomly with a given probability by reducing the
number of bits for each color channel. The image can be a PIL Image or a torch
Tensor, in which case it is expected to have [..., H, W] shape, where ... means
an arbitrary number of leading dimensions
an arbitrary number of leading dimensions.

Args:
bits (int): number of bits to keep for each channel (0-8)
Expand Down Expand Up @@ -1781,3 +1782,45 @@ def forward(self, img):

def __repr__(self):
return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
"""Solarize the image randomly with a given probability by inverting all pixel
values above a threshold. The image can be a PIL Image or a torch Tensor, in
which case it is expected to have [..., H, W] shape, where ... means an arbitrary
number of leading dimensions.

Args:
threshold (float): all pixels equal or above this value are inverted.
p (float): probability of the image being color inverted. Default value is 0.5
"""

def __init__(self, threshold, p=0.5):
super().__init__()
self.threshold = threshold
self.p = p

@staticmethod
def get_params() -> float:
"""Choose a value for the random transformation.

Returns:
float: Random value which is used to determine whether the random transformation
should occur.
"""
return torch.rand(1).item()

def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be solarized.

Returns:
PIL Image or Tensor: Randomly solarized image.
"""
if self.get_params() < self.p:
return F.solarize(img, self.threshold)
return img

def __repr__(self):
return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)