Skip to content

add tests for CelebA #3413

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 22, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 117 additions & 0 deletions test/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -639,5 +639,122 @@ class CIFAR100(CIFAR10TestCase):
)


class CelebATestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.CelebA
FEATURE_TYPES = (PIL.Image.Image, (torch.Tensor, int, tuple, type(None)))

CONFIGS = datasets_utils.combinations_grid(
split=("train", "valid", "test", "all"),
target_type=("attr", "identity", "bbox", "landmarks", ["attr", "identity"]),
)
REQUIRED_PACKAGES = ("pandas",)

_SPLIT_TO_IDX = dict(train=0, valid=1, test=2)

def inject_fake_data(self, tmpdir, config):
base_folder = pathlib.Path(tmpdir) / "celeba"
os.makedirs(base_folder)

num_images, num_images_per_split = self._create_split_txt(base_folder)

datasets_utils.create_image_folder(
base_folder, "img_align_celeba", lambda idx: f"{idx + 1:06d}.jpg", num_images
)
attr_names = self._create_attr_txt(base_folder, num_images)
self._create_identity_txt(base_folder, num_images)
self._create_bbox_txt(base_folder, num_images)
self._create_landmarks_txt(base_folder, num_images)

return dict(num_examples=num_images_per_split[config["split"]], attr_names=attr_names)

def _create_split_txt(self, root):
num_images_per_split = dict(train=3, valid=2, test=1)

data = [
[self._SPLIT_TO_IDX[split]] for split, num_images in num_images_per_split.items() for _ in range(num_images)
]
self._create_txt(root, "list_eval_partition.txt", data)

num_images_per_split["all"] = num_images = sum(num_images_per_split.values())
return num_images, num_images_per_split

def _create_attr_txt(self, root, num_images):
header = ("5_o_Clock_Shadow", "Young")
data = torch.rand((num_images, len(header))).ge(0.5).int().mul(2).sub(1).tolist()
self._create_txt(root, "list_attr_celeba.txt", data, header=header, add_num_examples=True)
return header

def _create_identity_txt(self, root, num_images):
data = torch.randint(1, 4, size=(num_images, 1)).tolist()
self._create_txt(root, "identity_CelebA.txt", data)

def _create_bbox_txt(self, root, num_images):
header = ("x_1", "y_1", "width", "height")
data = torch.randint(10, size=(num_images, len(header))).tolist()
self._create_txt(
root, "list_bbox_celeba.txt", data, header=header, add_num_examples=True, add_image_id_to_header=True
)

def _create_landmarks_txt(self, root, num_images):
header = ("lefteye_x", "rightmouth_y")
data = torch.randint(10, size=(num_images, len(header))).tolist()
self._create_txt(root, "list_landmarks_align_celeba.txt", data, header=header, add_num_examples=True)

def _create_txt(self, root, name, data, header=None, add_num_examples=False, add_image_id_to_header=False):
with open(pathlib.Path(root) / name, "w") as fh:
if add_num_examples:
fh.write(f"{len(data)}\n")

if header:
if add_image_id_to_header:
header = ("image_id", *header)
fh.write(f"{' '.join(header)}\n")

for idx, line in enumerate(data, 1):
fh.write(f"{' '.join((f'{idx:06d}.jpg', *[str(value) for value in line]))}\n")

def test_combined_targets(self):
target_types = ["attr", "identity", "bbox", "landmarks"]

individual_targets = []
for target_type in target_types:
with self.create_dataset(target_type=target_type) as (dataset, _):
_, target = dataset[0]
individual_targets.append(target)

with self.create_dataset(target_type=target_types) as (dataset, _):
_, combined_targets = dataset[0]

actual = len(individual_targets)
expected = len(combined_targets)
self.assertEqual(
actual,
expected,
f"The number of the returned combined targets does not match the the number targets if requested "
f"individually: {actual} != {expected}",
)

for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
with self.subTest(target_type=target_type):
actual = type(combined_target)
expected = type(individual_target)
self.assertIs(
actual,
expected,
f"Type of the combined target does not match the type of the corresponding individual target: "
f"{actual} is not {expected}",
)

def test_no_target(self):
with self.create_dataset(target_type=[]) as (dataset, _):
_, target = dataset[0]

self.assertIsNone(target)

def test_attr_names(self):
with self.create_dataset() as (dataset, info):
self.assertEqual(tuple(dataset.attr_names), info["attr_names"])


if __name__ == "__main__":
unittest.main()