-
Notifications
You must be signed in to change notification settings - Fork 7.1k
Porting to pytest #3996
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Porting to pytest #3996
Changes from all commits
56beb8f
fe2c62e
867e614
2a7bd30
c292f35
1710947
1f7a6dd
bb2184f
43b1e33
fa8feba
5c5773b
df62652
5accfe5
ed48ad2
1c1e5b1
0c88667
28b2d9b
a6d5392
f3fdb20
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,9 +5,8 @@ | |
from torchvision.transforms import InterpolationMode | ||
|
||
import numpy as np | ||
|
||
import unittest | ||
import pytest | ||
|
||
from typing import Sequence | ||
|
||
from common_utils import ( | ||
|
@@ -23,7 +22,6 @@ | |
) | ||
from _assert_utils import assert_equal | ||
|
||
|
||
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC | ||
|
||
|
||
|
@@ -97,121 +95,23 @@ def _test_op(func, method, device, fn_kwargs=None, meth_kwargs=None, test_exact_ | |
_test_class_op(method, device, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs) | ||
|
||
|
||
class Tester(unittest.TestCase): | ||
|
||
def setUp(self): | ||
self.device = "cpu" | ||
|
||
def test_random_horizontal_flip(self): | ||
_test_op(F.hflip, T.RandomHorizontalFlip, device=self.device) | ||
|
||
def test_random_vertical_flip(self): | ||
_test_op(F.vflip, T.RandomVerticalFlip, device=self.device) | ||
|
||
def test_random_invert(self): | ||
_test_op(F.invert, T.RandomInvert, device=self.device) | ||
|
||
def test_random_posterize(self): | ||
fn_kwargs = meth_kwargs = {"bits": 4} | ||
_test_op( | ||
F.posterize, T.RandomPosterize, device=self.device, fn_kwargs=fn_kwargs, | ||
meth_kwargs=meth_kwargs | ||
) | ||
|
||
def test_random_solarize(self): | ||
fn_kwargs = meth_kwargs = {"threshold": 192.0} | ||
_test_op( | ||
F.solarize, T.RandomSolarize, device=self.device, fn_kwargs=fn_kwargs, | ||
meth_kwargs=meth_kwargs | ||
) | ||
|
||
def test_random_adjust_sharpness(self): | ||
fn_kwargs = meth_kwargs = {"sharpness_factor": 2.0} | ||
_test_op( | ||
F.adjust_sharpness, T.RandomAdjustSharpness, device=self.device, fn_kwargs=fn_kwargs, | ||
meth_kwargs=meth_kwargs | ||
) | ||
|
||
def test_random_autocontrast(self): | ||
# We check the max abs difference because on some (very rare) pixels, the actual value may be different | ||
# between PIL and tensors due to floating approximations. | ||
_test_op( | ||
F.autocontrast, T.RandomAutocontrast, device=self.device, test_exact_match=False, | ||
agg_method='max', tol=(1 + 1e-5), allowed_percentage_diff=.05 | ||
) | ||
|
||
def test_random_equalize(self): | ||
_test_op(F.equalize, T.RandomEqualize, device=self.device) | ||
|
||
def test_random_erasing(self): | ||
img = torch.rand(3, 60, 60) | ||
|
||
# Test Set 0: invalid value | ||
random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0) | ||
with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"): | ||
random_erasing(img) | ||
|
||
tensor, _ = _create_data(24, 32, channels=3, device=self.device) | ||
batch_tensors = torch.rand(4, 3, 44, 56, device=self.device) | ||
|
||
test_configs = [ | ||
{"value": 0.2}, | ||
{"value": "random"}, | ||
{"value": (0.2, 0.2, 0.2)}, | ||
{"value": "random", "ratio": (0.1, 0.2)}, | ||
] | ||
|
||
for config in test_configs: | ||
fn = T.RandomErasing(**config) | ||
scripted_fn = torch.jit.script(fn) | ||
_test_transform_vs_scripted(fn, scripted_fn, tensor) | ||
_test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors) | ||
|
||
with get_tmp_dir() as tmp_dir: | ||
scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt")) | ||
|
||
def test_convert_image_dtype(self): | ||
tensor, _ = _create_data(26, 34, device=self.device) | ||
batch_tensors = torch.rand(4, 3, 44, 56, device=self.device) | ||
|
||
for in_dtype in int_dtypes() + float_dtypes(): | ||
in_tensor = tensor.to(in_dtype) | ||
in_batch_tensors = batch_tensors.to(in_dtype) | ||
for out_dtype in int_dtypes() + float_dtypes(): | ||
|
||
fn = T.ConvertImageDtype(dtype=out_dtype) | ||
scripted_fn = torch.jit.script(fn) | ||
|
||
if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \ | ||
(in_dtype == torch.float64 and out_dtype == torch.int64): | ||
with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"): | ||
_test_transform_vs_scripted(fn, scripted_fn, in_tensor) | ||
with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"): | ||
_test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors) | ||
continue | ||
|
||
_test_transform_vs_scripted(fn, scripted_fn, in_tensor) | ||
_test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors) | ||
|
||
with get_tmp_dir() as tmp_dir: | ||
scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt")) | ||
|
||
def test_autoaugment(self): | ||
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device) | ||
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device) | ||
|
||
s_transform = None | ||
for policy in T.AutoAugmentPolicy: | ||
for fill in [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]: | ||
transform = T.AutoAugment(policy=policy, fill=fill) | ||
s_transform = torch.jit.script(transform) | ||
for _ in range(25): | ||
_test_transform_vs_scripted(transform, s_transform, tensor) | ||
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors) | ||
|
||
if s_transform is not None: | ||
with get_tmp_dir() as tmp_dir: | ||
s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt")) | ||
@pytest.mark.parametrize('device', cpu_and_gpu()) | ||
@pytest.mark.parametrize( | ||
'func,method,fn_kwargs,match_kwargs', [ | ||
(F.hflip, T.RandomHorizontalFlip, None, {}), | ||
(F.vflip, T.RandomVerticalFlip, None, {}), | ||
(F.invert, T.RandomInvert, None, {}), | ||
(F.posterize, T.RandomPosterize, {"bits": 4}, {}), | ||
(F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}), | ||
(F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}), | ||
(F.autocontrast, T.RandomAutocontrast, None, {'test_exact_match': False, | ||
'agg_method': 'max', 'tol': (1 + 1e-5), | ||
'allowed_percentage_diff': .05}), | ||
(F.equalize, T.RandomEqualize, None, {}) | ||
] | ||
) | ||
def test_random(func, method, device, fn_kwargs, match_kwargs): | ||
_test_op(func, method, device, fn_kwargs, fn_kwargs, **match_kwargs) | ||
|
||
|
||
@pytest.mark.parametrize('device', cpu_and_gpu()) | ||
|
@@ -339,7 +239,7 @@ def test_center_crop(device): | |
meth_kwargs=meth_kwargs | ||
) | ||
fn_kwargs = {"output_size": (5,)} | ||
meth_kwargs = {"size": (5, )} | ||
meth_kwargs = {"size": (5,)} | ||
_test_op( | ||
F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, | ||
meth_kwargs=meth_kwargs | ||
|
@@ -371,7 +271,7 @@ def test_center_crop(device): | |
# test_ten_crop | ||
(F.ten_crop, T.TenCrop, 10) | ||
]) | ||
@pytest.mark.parametrize('size', [(5, ), [5, ], (4, 5), [4, 5]]) | ||
@pytest.mark.parametrize('size', [(5,), [5, ], (4, 5), [4, 5]]) | ||
def test_x_crop(fn, method, out_length, size, device): | ||
meth_kwargs = fn_kwargs = {'size': size} | ||
scripted_fn = torch.jit.script(fn) | ||
|
@@ -462,7 +362,7 @@ def test_resize_save(self): | |
@pytest.mark.parametrize('device', cpu_and_gpu()) | ||
@pytest.mark.parametrize('scale', [(0.7, 1.2), [0.7, 1.2]]) | ||
@pytest.mark.parametrize('ratio', [(0.75, 1.333), [0.75, 1.333]]) | ||
@pytest.mark.parametrize('size', [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]]) | ||
@pytest.mark.parametrize('size', [(32,), [44, ], [32, ], [32, 32], (32, 32), [44, 55]]) | ||
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR, BICUBIC]) | ||
def test_resized_crop(self, scale, ratio, size, interpolation, device): | ||
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device) | ||
|
@@ -480,14 +380,6 @@ def test_resized_crop_save(self): | |
s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt")) | ||
|
||
|
||
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device") | ||
class CUDATester(Tester): | ||
|
||
def setUp(self): | ||
torch.set_deterministic(False) | ||
self.device = "cuda" | ||
|
||
|
||
def _test_random_affine_helper(device, **kwargs): | ||
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device) | ||
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device) | ||
|
@@ -600,14 +492,101 @@ def test_random_perspective_save(): | |
(T.RandomGrayscale, {}) | ||
]) | ||
def test_to_grayscale(device, Klass, meth_kwargs): | ||
|
||
tol = 1.0 + 1e-10 | ||
_test_class_op( | ||
Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, | ||
tol=tol, agg_method="max" | ||
) | ||
|
||
|
||
@pytest.mark.parametrize('device', cpu_and_gpu()) | ||
@pytest.mark.parametrize('in_dtype', int_dtypes() + float_dtypes()) | ||
@pytest.mark.parametrize('out_dtype', int_dtypes() + float_dtypes()) | ||
def test_convert_image_dtype(device, in_dtype, out_dtype): | ||
tensor, _ = _create_data(26, 34, device=device) | ||
batch_tensors = torch.rand(4, 3, 44, 56, device=device) | ||
|
||
in_tensor = tensor.to(in_dtype) | ||
in_batch_tensors = batch_tensors.to(in_dtype) | ||
|
||
fn = T.ConvertImageDtype(dtype=out_dtype) | ||
scripted_fn = torch.jit.script(fn) | ||
|
||
if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \ | ||
(in_dtype == torch.float64 and out_dtype == torch.int64): | ||
with pytest.raises(RuntimeError, match=r"cannot be performed safely"): | ||
_test_transform_vs_scripted(fn, scripted_fn, in_tensor) | ||
with pytest.raises(RuntimeError, match=r"cannot be performed safely"): | ||
_test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors) | ||
return | ||
|
||
_test_transform_vs_scripted(fn, scripted_fn, in_tensor) | ||
_test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors) | ||
|
||
|
||
def test_convert_image_dtype_save(): | ||
fn = T.ConvertImageDtype(dtype=torch.uint8) | ||
scripted_fn = torch.jit.script(fn) | ||
with get_tmp_dir() as tmp_dir: | ||
scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt")) | ||
Comment on lines
+530
to
+531
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. this can take a bit of time, especially when the test iss heavily parametrized. Here and in the rest of the test, let's extract the saving part into separate tests. Here we could name it |
||
|
||
|
||
@pytest.mark.parametrize('device', cpu_and_gpu()) | ||
@pytest.mark.parametrize('policy', [policy for policy in T.AutoAugmentPolicy]) | ||
@pytest.mark.parametrize('fill', [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]) | ||
def test_autoaugment(device, policy, fill): | ||
tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device) | ||
batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device) | ||
|
||
s_transform = None | ||
transform = T.AutoAugment(policy=policy, fill=fill) | ||
s_transform = torch.jit.script(transform) | ||
for _ in range(25): | ||
_test_transform_vs_scripted(transform, s_transform, tensor) | ||
_test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors) | ||
|
||
|
||
def test_autoaugment_save(): | ||
transform = T.AutoAugment() | ||
s_transform = torch.jit.script(transform) | ||
with get_tmp_dir() as tmp_dir: | ||
s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt")) | ||
|
||
|
||
@pytest.mark.parametrize('device', cpu_and_gpu()) | ||
@pytest.mark.parametrize( | ||
'config', [ | ||
{"value": 0.2}, | ||
{"value": "random"}, | ||
{"value": (0.2, 0.2, 0.2)}, | ||
{"value": "random", "ratio": (0.1, 0.2)} | ||
] | ||
) | ||
def test_random_erasing(device, config): | ||
tensor, _ = _create_data(24, 32, channels=3, device=device) | ||
batch_tensors = torch.rand(4, 3, 44, 56, device=device) | ||
|
||
fn = T.RandomErasing(**config) | ||
scripted_fn = torch.jit.script(fn) | ||
_test_transform_vs_scripted(fn, scripted_fn, tensor) | ||
_test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors) | ||
|
||
|
||
def test_random_erasing_save(): | ||
fn = T.RandomErasing(value=0.2) | ||
scripted_fn = torch.jit.script(fn) | ||
with get_tmp_dir() as tmp_dir: | ||
scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt")) | ||
Comment on lines
+578
to
+579
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. here as well |
||
|
||
|
||
def test_random_erasing_with_invalid_data(): | ||
img = torch.rand(3, 60, 60) | ||
# Test Set 0: invalid value | ||
random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0) | ||
with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"): | ||
random_erasing(img) | ||
|
||
|
||
@pytest.mark.parametrize('device', cpu_and_gpu()) | ||
def test_normalize(device): | ||
fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | ||
|
@@ -659,7 +638,6 @@ def test_linear_transformation(device): | |
def test_compose(device): | ||
tensor, _ = _create_data(26, 34, device=device) | ||
tensor = tensor.to(dtype=torch.float32) / 255.0 | ||
|
||
transforms = T.Compose([ | ||
T.CenterCrop(10), | ||
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | ||
|
@@ -726,7 +704,3 @@ def test_gaussian_blur(device, meth_kwargs): | |
T.GaussianBlur, meth_kwargs=meth_kwargs, | ||
test_exact_match=False, device=device, agg_method="max", tol=tol | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Uh oh!
There was an error while loading. Please reload this page.