Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions mypy.ini
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
files = torchvision
show_error_codes = True
pretty = True
allow_redefinition = True

[mypy-torchvision.io._video_opt.*]

Expand Down
8 changes: 3 additions & 5 deletions torchvision/datasets/celeba.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
import csv
import os
from collections import namedtuple
from functools import partial
from typing import Any, Callable, List, Optional, Union, Tuple

import PIL
Expand Down Expand Up @@ -115,15 +114,14 @@ def _load_csv(
filename: str,
header: Optional[int] = None,
) -> CSV:
data, indices, headers = [], [], []

fn = partial(os.path.join, self.root, self.base_folder)
with open(fn(filename)) as csv_file:
with open(os.path.join(self.root, self.base_folder, filename)) as csv_file:
data = list(csv.reader(csv_file, delimiter=" ", skipinitialspace=True))

if header is not None:
headers = data[header]
data = data[header + 1 :]
else:
headers = []

indices = [row[0] for row in data]
data = [row[1:] for row in data]
Expand Down
2 changes: 1 addition & 1 deletion torchvision/datasets/imagenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ def parse_devkit_archive(root: str, file: Optional[str] = None) -> None:
"""
import scipy.io as sio

def parse_meta_mat(devkit_root: str) -> Tuple[Dict[int, str], Dict[str, str]]:
def parse_meta_mat(devkit_root: str) -> Tuple[Dict[int, str], Dict[str, Tuple[str, ...]]]:
metafile = os.path.join(devkit_root, "data", "meta.mat")
meta = sio.loadmat(metafile, squeeze_me=True)["synsets"]
nums_children = list(zip(*meta))[4]
Expand Down
8 changes: 4 additions & 4 deletions torchvision/prototype/datasets/_builtin/caltech.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,11 +117,11 @@ def _make_datapipe(
images_dp, anns_dp = resource_dps

images_dp = TarArchiveReader(images_dp)
images_dp = Filter(images_dp, self._is_not_background_image)
images_dp: IterDataPipe = Filter(images_dp, self._is_not_background_image)
images_dp = Shuffler(images_dp, buffer_size=INFINITE_BUFFER_SIZE)

anns_dp = TarArchiveReader(anns_dp)
anns_dp = Filter(anns_dp, self._is_ann)
anns_dp: IterDataPipe = Filter(anns_dp, self._is_ann)

dp = KeyZipper(
images_dp,
Expand All @@ -136,7 +136,7 @@ def _make_datapipe(
def generate_categories_file(self, root: Union[str, pathlib.Path]) -> None:
dp = self.resources(self.default_config)[0].to_datapipe(pathlib.Path(root) / self.name)
dp = TarArchiveReader(dp)
dp = Filter(dp, self._is_not_background_image)
dp: IterDataPipe = Filter(dp, self._is_not_background_image)
dir_names = {pathlib.Path(path).parent.name for path, _ in dp}
create_categories_file(HERE, self.name, sorted(dir_names))

Expand Down Expand Up @@ -185,7 +185,7 @@ def _make_datapipe(
) -> IterDataPipe[Dict[str, Any]]:
dp = resource_dps[0]
dp = TarArchiveReader(dp)
dp = Filter(dp, self._is_not_rogue_file)
dp: IterDataPipe = Filter(dp, self._is_not_rogue_file)
dp = Shuffler(dp, buffer_size=INFINITE_BUFFER_SIZE)
return Mapper(dp, self._collate_and_decode_sample, fn_kwargs=dict(decoder=decoder))

Expand Down
4 changes: 2 additions & 2 deletions torchvision/prototype/datasets/_folder.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,8 +49,8 @@ def from_data_folder(
root = pathlib.Path(root).expanduser().resolve()
categories = sorted(entry.name for entry in os.scandir(root) if entry.is_dir())
masks: Union[List[str], str] = [f"*.{ext}" for ext in valid_extensions] if valid_extensions is not None else ""
dp: IterDataPipe = FileLister(str(root), recursive=recursive, masks=masks)
dp = Filter(dp, _is_not_top_level_file, fn_kwargs=dict(root=root))
dp = FileLister(str(root), recursive=recursive, masks=masks)
dp: IterDataPipe = Filter(dp, _is_not_top_level_file, fn_kwargs=dict(root=root))
dp = Shuffler(dp, buffer_size=INFINITE_BUFFER_SIZE)
dp = FileLoader(dp)
return (
Expand Down