-
Notifications
You must be signed in to change notification settings - Fork 7.1k
Add SmallNORB Dataset #492
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
537617a
Add SmallNORB Dataset
mavanb 9fae73f
bug fix: typo in string comparison
mavanb df9dd07
Removed literal string interpolation
mavanb e2a7cdf
changed order in tuple of __get_item__
mavanb 448fac0
Bug fix: switched test_info_file and test_label_file
mavanb File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,345 @@ | ||
from __future__ import print_function | ||
import os | ||
import errno | ||
import struct | ||
|
||
import torch | ||
import torch.utils.data as data | ||
import numpy as np | ||
from PIL import Image | ||
from .utils import download_url, check_integrity | ||
|
||
|
||
class SmallNORB(data.Dataset): | ||
"""`MNIST <https://cs.nyu.edu/~ylclab/data/norb-v1.0-small//>`_ Dataset. | ||
|
||
Args: | ||
root (string): Root directory of dataset where processed folder and | ||
and raw folder exist. | ||
train (bool, optional): If True, creates dataset from the training files, | ||
otherwise from the test files. | ||
download (bool, optional): If true, downloads the dataset from the internet and | ||
puts it in root directory. If the dataset is already processed, it is not processed | ||
and downloaded again. If dataset is only already downloaded, it is not | ||
downloaded again. | ||
transform (callable, optional): A function/transform that takes in an PIL image | ||
and returns a transformed version. E.g, ``transforms.RandomCrop`` | ||
target_transform (callable, optional): A function/transform that takes in the | ||
target and transforms it. | ||
info_transform (callable, optional): A function/transform that takes in the | ||
info and transforms it. | ||
mode (string, optional): Denotes how the images in the data files are returned. Possible values: | ||
- all (default): both left and right are included separately. | ||
- stereo: left and right images are included as corresponding pairs. | ||
- left: only the left images are included. | ||
- right: only the right images are included. | ||
""" | ||
|
||
dataset_root = "https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/" | ||
data_files = { | ||
'train': { | ||
'dat': { | ||
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-dat.mat', | ||
"md5_gz": "66054832f9accfe74a0f4c36a75bc0a2", | ||
"md5": "8138a0902307b32dfa0025a36dfa45ec" | ||
}, | ||
'info': { | ||
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-info.mat', | ||
"md5_gz": "51dee1210a742582ff607dfd94e332e3", | ||
"md5": "19faee774120001fc7e17980d6960451" | ||
}, | ||
'cat': { | ||
"name": 'smallnorb-5x46789x9x18x6x2x96x96-training-cat.mat', | ||
"md5_gz": "23c8b86101fbf0904a000b43d3ed2fd9", | ||
"md5": "fd5120d3f770ad57ebe620eb61a0b633" | ||
}, | ||
}, | ||
'test': { | ||
'dat': { | ||
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-dat.mat', | ||
"md5_gz": "e4ad715691ed5a3a5f138751a4ceb071", | ||
"md5": "e9920b7f7b2869a8f1a12e945b2c166c" | ||
}, | ||
'info': { | ||
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-info.mat', | ||
"md5_gz": "a9454f3864d7fd4bb3ea7fc3eb84924e", | ||
"md5": "7c5b871cc69dcadec1bf6a18141f5edc" | ||
}, | ||
'cat': { | ||
"name": 'smallnorb-5x01235x9x18x6x2x96x96-testing-cat.mat', | ||
"md5_gz": "5aa791cd7e6016cf957ce9bdb93b8603", | ||
"md5": "fd5120d3f770ad57ebe620eb61a0b633" | ||
}, | ||
}, | ||
} | ||
|
||
raw_folder = 'raw' | ||
processed_folder = 'processed' | ||
train_image_file = 'train_img' | ||
train_label_file = 'train_label' | ||
train_info_file = 'train_info' | ||
test_image_file = 'test_img' | ||
test_label_file = 'test_label' | ||
test_info_file = 'test_info' | ||
extension = '.pt' | ||
|
||
def __init__(self, root, train=True, transform=None, target_transform=None, info_transform=None, download=False, | ||
mode="all"): | ||
|
||
self.root = os.path.expanduser(root) | ||
self.transform = transform | ||
self.target_transform = target_transform | ||
self.info_transform = info_transform | ||
self.train = train # training set or test set | ||
self.mode = mode | ||
|
||
if download: | ||
self.download() | ||
|
||
if not self._check_exists(): | ||
raise RuntimeError('Dataset not found or corrupted.' + | ||
' You can use download=True to download it') | ||
|
||
# load test or train set | ||
image_file = self.train_image_file if self.train else self.test_image_file | ||
label_file = self.train_label_file if self.train else self.test_label_file | ||
info_file = self.train_info_file if self.train else self.test_info_file | ||
|
||
# load labels | ||
self.labels = self._load(label_file) | ||
|
||
# load info files | ||
self.infos = self._load(info_file) | ||
|
||
# load right set | ||
if self.mode == "left": | ||
self.data = self._load("{}_left".format(image_file)) | ||
|
||
# load left set | ||
elif self.mode == "right": | ||
self.data = self._load("{}_right".format(image_file)) | ||
|
||
elif self.mode == "all" or self.mode == "stereo": | ||
left_data = self._load("{}_left".format(image_file)) | ||
right_data = self._load("{}_right".format(image_file)) | ||
|
||
# load stereo | ||
if self.mode == "stereo": | ||
self.data = torch.stack((left_data, right_data), dim=1) | ||
|
||
# load all | ||
else: | ||
self.data = torch.cat((left_data, right_data), dim=0) | ||
|
||
def __getitem__(self, index): | ||
""" | ||
Args: | ||
index (int): Index | ||
|
||
Returns: | ||
mode ``all'', ``left'', ``right'': | ||
tuple: (image, target, info) | ||
mode ``stereo'': | ||
tuple: (image left, image right, target, info) | ||
""" | ||
target = self.labels[index % 24300] if self.mode is "all" else self.labels[index] | ||
if self.target_transform is not None: | ||
target = self.target_transform(target) | ||
|
||
info = self.infos[index % 24300] if self.mode is "all" else self.infos[index] | ||
if self.info_transform is not None: | ||
info = self.info_transform(info) | ||
|
||
if self.mode == "stereo": | ||
img_left = self._transform(self.data[index, 0]) | ||
img_right = self._transform(self.data[index, 1]) | ||
return img_left, img_right, target, info | ||
|
||
img = self._transform(self.data[index]) | ||
return img, target, info | ||
|
||
def __len__(self): | ||
return len(self.data) | ||
|
||
def _transform(self, img): | ||
# doing this so that it is consistent with all other data sets | ||
# to return a PIL Image | ||
img = Image.fromarray(img.numpy(), mode='L') | ||
|
||
if self.transform is not None: | ||
img = self.transform(img) | ||
return img | ||
|
||
def _load(self, file_name): | ||
return torch.load(os.path.join(self.root, self.processed_folder, file_name + self.extension)) | ||
|
||
def _save(self, file, file_name): | ||
with open(os.path.join(self.root, self.processed_folder, file_name + self.extension), 'wb') as f: | ||
torch.save(file, f) | ||
|
||
def _check_exists(self): | ||
""" Check if processed files exists.""" | ||
files = ( | ||
"{}_left".format(self.train_image_file), | ||
"{}_right".format(self.train_image_file), | ||
"{}_left".format(self.test_image_file), | ||
"{}_right".format(self.test_image_file), | ||
self.test_label_file, | ||
self.train_label_file | ||
) | ||
fpaths = [os.path.exists(os.path.join(self.root, self.processed_folder, f + self.extension)) for f in files] | ||
return False not in fpaths | ||
|
||
def _flat_data_files(self): | ||
return [j for i in self.data_files.values() for j in list(i.values())] | ||
|
||
def _check_integrity(self): | ||
"""Check if unpacked files have correct md5 sum.""" | ||
root = self.root | ||
for file_dict in self._flat_data_files(): | ||
filename = file_dict["name"] | ||
md5 = file_dict["md5"] | ||
fpath = os.path.join(root, self.raw_folder, filename) | ||
if not check_integrity(fpath, md5): | ||
return False | ||
return True | ||
|
||
def download(self): | ||
"""Download the SmallNORB data if it doesn't exist in processed_folder already.""" | ||
import gzip | ||
|
||
if self._check_exists(): | ||
return | ||
|
||
# check if already extracted and verified | ||
if self._check_integrity(): | ||
print('Files already downloaded and verified') | ||
else: | ||
# download and extract | ||
for file_dict in self._flat_data_files(): | ||
url = self.dataset_root + file_dict["name"] + '.gz' | ||
filename = file_dict["name"] | ||
gz_filename = filename + '.gz' | ||
md5 = file_dict["md5_gz"] | ||
fpath = os.path.join(self.root, self.raw_folder, filename) | ||
gz_fpath = fpath + '.gz' | ||
|
||
# download if compressed file not exists and verified | ||
download_url(url, os.path.join(self.root, self.raw_folder), gz_filename, md5) | ||
|
||
print('# Extracting data {}\n'.format(filename)) | ||
|
||
with open(fpath, 'wb') as out_f, \ | ||
gzip.GzipFile(gz_fpath) as zip_f: | ||
out_f.write(zip_f.read()) | ||
|
||
os.unlink(gz_fpath) | ||
|
||
# process and save as torch files | ||
print('Processing...') | ||
|
||
# create processed folder | ||
try: | ||
os.makedirs(os.path.join(self.root, self.processed_folder)) | ||
except OSError as e: | ||
if e.errno == errno.EEXIST: | ||
pass | ||
else: | ||
raise | ||
|
||
# read train files | ||
left_train_img, right_train_img = self._read_image_file(self.data_files["train"]["dat"]["name"]) | ||
train_info = self._read_info_file(self.data_files["train"]["info"]["name"]) | ||
train_label = self._read_label_file(self.data_files["train"]["cat"]["name"]) | ||
|
||
# read test files | ||
left_test_img, right_test_img = self._read_image_file(self.data_files["test"]["dat"]["name"]) | ||
test_info = self._read_info_file(self.data_files["test"]["info"]["name"]) | ||
test_label = self._read_label_file(self.data_files["test"]["cat"]["name"]) | ||
|
||
# save training files | ||
self._save(left_train_img, "{}_left".format(self.train_image_file)) | ||
self._save(right_train_img, "{}_right".format(self.train_image_file)) | ||
self._save(train_label, self.train_label_file) | ||
self._save(train_info, self.train_info_file) | ||
|
||
# save test files | ||
self._save(left_test_img, "{}_left".format(self.test_image_file)) | ||
self._save(right_test_img, "{}_right".format(self.test_image_file)) | ||
self._save(test_label, self.test_label_file) | ||
self._save(test_info, self.test_info_file) | ||
|
||
print('Done!') | ||
|
||
@staticmethod | ||
def _parse_header(file_pointer): | ||
# Read magic number and ignore | ||
struct.unpack('<BBBB', file_pointer.read(4)) # '<' is little endian) | ||
|
||
# Read dimensions | ||
dimensions = [] | ||
num_dims, = struct.unpack('<i', file_pointer.read(4)) # '<' is little endian) | ||
for _ in range(num_dims): | ||
dimensions.extend(struct.unpack('<i', file_pointer.read(4))) | ||
|
||
return dimensions | ||
|
||
def _read_image_file(self, file_name): | ||
fpath = os.path.join(self.root, self.raw_folder, file_name) | ||
with open(fpath, mode='rb') as f: | ||
dimensions = self._parse_header(f) | ||
assert dimensions == [24300, 2, 96, 96] | ||
num_samples, _, height, width = dimensions | ||
|
||
left_samples = np.zeros(shape=(num_samples, height, width), dtype=np.uint8) | ||
right_samples = np.zeros(shape=(num_samples, height, width), dtype=np.uint8) | ||
|
||
for i in range(num_samples): | ||
|
||
# left and right images stored in pairs, left first | ||
left_samples[i, :, :] = self._read_image(f, height, width) | ||
right_samples[i, :, :] = self._read_image(f, height, width) | ||
|
||
return torch.ByteTensor(left_samples), torch.ByteTensor(right_samples) | ||
|
||
@staticmethod | ||
def _read_image(file_pointer, height, width): | ||
"""Read raw image data and restore shape as appropriate. """ | ||
image = struct.unpack('<' + height * width * 'B', file_pointer.read(height * width)) | ||
image = np.uint8(np.reshape(image, newshape=(height, width))) | ||
return image | ||
|
||
def _read_label_file(self, file_name): | ||
fpath = os.path.join(self.root, self.raw_folder, file_name) | ||
with open(fpath, mode='rb') as f: | ||
dimensions = self._parse_header(f) | ||
assert dimensions == [24300] | ||
num_samples = dimensions[0] | ||
|
||
struct.unpack('<BBBB', f.read(4)) # ignore this integer | ||
struct.unpack('<BBBB', f.read(4)) # ignore this integer | ||
|
||
labels = np.zeros(shape=num_samples, dtype=np.int32) | ||
for i in range(num_samples): | ||
category, = struct.unpack('<i', f.read(4)) | ||
labels[i] = category | ||
return torch.LongTensor(labels) | ||
|
||
def _read_info_file(self, file_name): | ||
fpath = os.path.join(self.root, self.raw_folder, file_name) | ||
with open(fpath, mode='rb') as f: | ||
|
||
dimensions = self._parse_header(f) | ||
assert dimensions == [24300, 4] | ||
num_samples, num_info = dimensions | ||
|
||
struct.unpack('<BBBB', f.read(4)) # ignore this integer | ||
|
||
infos = np.zeros(shape=(num_samples, num_info), dtype=np.int32) | ||
|
||
for r in range(num_samples): | ||
for c in range(num_info): | ||
info, = struct.unpack('<i', f.read(4)) | ||
infos[r, c] = info | ||
|
||
return torch.LongTensor(infos) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
'is' need to change to "=="