Skip to content

Add SUN397 Dataset #5132

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Jan 7, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ You can also create your own datasets using the provided :ref:`base classes <bas
SEMEION
Sintel
STL10
SUN397
SVHN
UCF101
USPS
Expand Down
46 changes: 46 additions & 0 deletions test/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -2206,6 +2206,52 @@ def inject_fake_data(self, tmpdir: str, config):
return len(sampled_classes * n_samples_per_class)


class SUN397TestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.SUN397

ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
split=("train", "test"),
partition=(1, 10, None),
)

def inject_fake_data(self, tmpdir: str, config):
data_dir = pathlib.Path(tmpdir) / "SUN397"
data_dir.mkdir()

num_images_per_class = 5
sampled_classes = ("abbey", "airplane_cabin", "airport_terminal")
im_paths = []

for cls in sampled_classes:
image_folder = data_dir / cls[0]
im_paths.extend(
datasets_utils.create_image_folder(
image_folder,
image_folder / cls,
file_name_fn=lambda idx: f"sun_{idx}.jpg",
num_examples=num_images_per_class,
)
)

with open(data_dir / "ClassName.txt", "w") as file:
file.writelines("\n".join(f"/{cls[0]}/{cls}" for cls in sampled_classes))

if config["partition"] is not None:
num_samples = max(len(im_paths) // (2 if config["split"] == "train" else 3), 1)

with open(data_dir / f"{config['split'].title()}ing_{config['partition']:02d}.txt", "w") as file:
file.writelines(
"\n".join(
f"/{f_path.relative_to(data_dir).as_posix()}"
for f_path in random.choices(im_paths, k=num_samples)
)
)
else:
num_samples = len(im_paths)

return num_samples


class DTDTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.DTD
FEATURE_TYPES = (PIL.Image.Image, int)
Expand Down
2 changes: 2 additions & 0 deletions torchvision/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
from .sbu import SBU
from .semeion import SEMEION
from .stl10 import STL10
from .sun397 import SUN397
from .svhn import SVHN
from .ucf101 import UCF101
from .usps import USPS
Expand All @@ -51,6 +52,7 @@
"MNIST",
"KMNIST",
"STL10",
"SUN397",
"SVHN",
"PhotoTour",
"SEMEION",
Expand Down
98 changes: 98 additions & 0 deletions torchvision/datasets/sun397.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
from pathlib import Path
from typing import Any, Tuple, Callable, Optional

import PIL.Image

from .utils import verify_str_arg, download_and_extract_archive
from .vision import VisionDataset


class SUN397(VisionDataset):
"""`The SUN397 Data Set <https://vision.princeton.edu/projects/2010/SUN/>`_.

The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of
397 categories with 108'754 images. The dataset also provides 10 partitions for training
and testing, with each partition consisting of 50 images per class.

Args:
root (string): Root directory of the dataset.
split (string, optional): The dataset split, supports ``"train"`` (default) and ``"test"``.
partition (int, optional): A valid partition can be an integer from 1 to 10 or None,
for the entire dataset.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed
version. E.g, ``transforms.RandomCrop``.
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
"""

_DATASET_URL = "http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz"
_DATASET_MD5 = "8ca2778205c41d23104230ba66911c7a"
_PARTITIONS_URL = "https://vision.princeton.edu/projects/2010/SUN/download/Partitions.zip"
_PARTITIONS_MD5 = "29a205c0a0129d21f36cbecfefe81881"

def __init__(
self,
root: str,
split: str = "train",
partition: Optional[int] = 1,
download: bool = True,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
) -> None:
super().__init__(root, transform=transform, target_transform=target_transform)
self.split = verify_str_arg(split, "split", ("train", "test"))
self.partition = partition
self._data_dir = Path(self.root) / "SUN397"

if self.partition is not None:
if self.partition < 0 or self.partition > 10:
raise RuntimeError(f"The partition parameter should be an int in [1, 10] or None, got {partition}.")

if download:
self._download()

if not self._check_exists():
raise RuntimeError("Dataset not found. You can use download=True to download it")

with open(self._data_dir / "ClassName.txt") as f:
self.classes = [c[3:].strip() for c in f]

self.class_to_idx = dict(zip(self.classes, range(len(self.classes))))
if self.partition is not None:
with open(self._data_dir / f"{self.split.title()}ing_{self.partition:02d}.txt", "r") as f:
self._image_files = [self._data_dir.joinpath(*line.strip()[1:].split("/")) for line in f]
else:
self._image_files = list(self._data_dir.rglob("sun_*.jpg"))

self._labels = [
self.class_to_idx["/".join(path.relative_to(self._data_dir).parts[1:-1])] for path in self._image_files
]

def __len__(self) -> int:
return len(self._image_files)

def __getitem__(self, idx) -> Tuple[Any, Any]:
image_file, label = self._image_files[idx], self._labels[idx]
image = PIL.Image.open(image_file).convert("RGB")

if self.transform:
image = self.transform(image)

if self.target_transform:
label = self.target_transform(label)

return image, label

def _check_exists(self) -> bool:
return self._data_dir.exists() and self._data_dir.is_dir()

def extra_repr(self) -> str:
return "Split: {split}".format(**self.__dict__)

def _download(self) -> None:
if self._check_exists():
return
download_and_extract_archive(self._DATASET_URL, download_root=self.root, md5=self._DATASET_MD5)
download_and_extract_archive(self._PARTITIONS_URL, download_root=str(self._data_dir), md5=self._PARTITIONS_MD5)