Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion torchvision/prototype/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

from ._augment import RandomErasing, RandomMixup, RandomCutmix
from ._auto_augment import RandAugment, TrivialAugmentWide, AutoAugment, AugMix
from ._color import ColorJitter, RandomPhotometricDistort
from ._color import ColorJitter, RandomPhotometricDistort, RandomEqualize
from ._container import Compose, RandomApply, RandomChoice, RandomOrder
from ._geometry import (
Resize,
Expand Down
17 changes: 17 additions & 0 deletions torchvision/prototype/transforms/_color.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from torchvision.prototype.transforms import Transform, functional as F
from torchvision.transforms import functional as _F

from ._transform import _RandomApplyTransform
from ._utils import is_simple_tensor, get_image_dimensions, query_image

T = TypeVar("T", features.Image, torch.Tensor, PIL.Image.Image)
Expand Down Expand Up @@ -188,3 +189,19 @@ def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if params["channel_shuffle"]:
input = self._channel_shuffle(input)
return input


class RandomEqualize(_RandomApplyTransform):
def __init__(self, p: float = 0.5):
super().__init__(p=p)

def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if isinstance(input, features.Image):
output = F.equalize_image_tensor(input)
return features.Image.new_like(input, output)
elif is_simple_tensor(input):
return F.equalize_image_tensor(input)
elif isinstance(input, PIL.Image.Image):
return F.equalize_image_pil(input)
else:
return input