Skip to content

Add preprocessing information on the Weights documentation #6009

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
May 13, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -366,6 +366,11 @@ def inject_weight_metadata(app, what, name, obj, options, lines):
lines += [".. table::", ""]
lines += textwrap.indent(table, " " * 4).split("\n")
lines.append("")
lines.append(
f"The inference transforms are available at ``{str(field)}.transforms`` and "
f"perform the following operations: {field.transforms().describe()}"
)
lines.append("")


def generate_weights_table(module, table_name, metrics, include_patterns=None, exclude_patterns=None):
Expand Down
109 changes: 85 additions & 24 deletions torchvision/transforms/_presets.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,12 @@ def forward(self, img: Tensor) -> Tensor:
img = F.pil_to_tensor(img)
return F.convert_image_dtype(img, torch.float)

def __repr__(self) -> str:
return self.__class__.__name__ + "()"

def describe(self) -> str:
return "The images are rescaled to ``[0.0, 1.0]``."


class ImageClassification(nn.Module):
def __init__(
Expand All @@ -37,21 +43,38 @@ def __init__(
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
) -> None:
super().__init__()
self._crop_size = [crop_size]
self._size = [resize_size]
self._mean = list(mean)
self._std = list(std)
self._interpolation = interpolation
self.crop_size = [crop_size]
self.resize_size = [resize_size]
self.mean = list(mean)
self.std = list(std)
self.interpolation = interpolation

def forward(self, img: Tensor) -> Tensor:
img = F.resize(img, self._size, interpolation=self._interpolation)
img = F.center_crop(img, self._crop_size)
img = F.resize(img, self.resize_size, interpolation=self.interpolation)
img = F.center_crop(img, self.crop_size)
if not isinstance(img, Tensor):
img = F.pil_to_tensor(img)
img = F.convert_image_dtype(img, torch.float)
img = F.normalize(img, mean=self._mean, std=self._std)
img = F.normalize(img, mean=self.mean, std=self.std)
return img

def __repr__(self) -> str:
format_string = self.__class__.__name__ + "("
format_string += f"\n crop_size={self.crop_size}"
format_string += f"\n resize_size={self.resize_size}"
format_string += f"\n mean={self.mean}"
format_string += f"\n std={self.std}"
format_string += f"\n interpolation={self.interpolation}"
format_string += "\n)"
return format_string

def describe(self) -> str:
return (
f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``, "
f"followed by a central crop of ``crop_size={self.crop_size}``. Then the values are rescaled to "
f"``[0.0, 1.0]`` and normalized using ``mean={self.mean}`` and ``std={self.std}``."
)


class VideoClassification(nn.Module):
def __init__(
Expand All @@ -64,11 +87,11 @@ def __init__(
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
) -> None:
super().__init__()
self._crop_size = list(crop_size)
self._size = list(resize_size)
self._mean = list(mean)
self._std = list(std)
self._interpolation = interpolation
self.crop_size = list(crop_size)
self.resize_size = list(resize_size)
self.mean = list(mean)
self.std = list(std)
self.interpolation = interpolation

def forward(self, vid: Tensor) -> Tensor:
need_squeeze = False
Expand All @@ -79,18 +102,35 @@ def forward(self, vid: Tensor) -> Tensor:
vid = vid.permute(0, 1, 4, 2, 3) # (N, T, H, W, C) => (N, T, C, H, W)
N, T, C, H, W = vid.shape
vid = vid.view(-1, C, H, W)
vid = F.resize(vid, self._size, interpolation=self._interpolation)
vid = F.center_crop(vid, self._crop_size)
vid = F.resize(vid, self.resize_size, interpolation=self.interpolation)
vid = F.center_crop(vid, self.crop_size)
vid = F.convert_image_dtype(vid, torch.float)
vid = F.normalize(vid, mean=self._mean, std=self._std)
H, W = self._crop_size
vid = F.normalize(vid, mean=self.mean, std=self.std)
H, W = self.crop_size
vid = vid.view(N, T, C, H, W)
vid = vid.permute(0, 2, 1, 3, 4) # (N, T, C, H, W) => (N, C, T, H, W)

if need_squeeze:
vid = vid.squeeze(dim=0)
return vid

def __repr__(self) -> str:
format_string = self.__class__.__name__ + "("
format_string += f"\n crop_size={self.crop_size}"
format_string += f"\n resize_size={self.resize_size}"
format_string += f"\n mean={self.mean}"
format_string += f"\n std={self.std}"
format_string += f"\n interpolation={self.interpolation}"
format_string += "\n)"
return format_string

def describe(self) -> str:
return (
f"The video frames are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``, "
f"followed by a central crop of ``crop_size={self.crop_size}``. Then the values are rescaled to "
f"``[0.0, 1.0]`` and normalized using ``mean={self.mean}`` and ``std={self.std}``."
)


class SemanticSegmentation(nn.Module):
def __init__(
Expand All @@ -102,20 +142,35 @@ def __init__(
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
) -> None:
super().__init__()
self._size = [resize_size] if resize_size is not None else None
self._mean = list(mean)
self._std = list(std)
self._interpolation = interpolation
self.resize_size = [resize_size] if resize_size is not None else None
self.mean = list(mean)
self.std = list(std)
self.interpolation = interpolation

def forward(self, img: Tensor) -> Tensor:
if isinstance(self._size, list):
img = F.resize(img, self._size, interpolation=self._interpolation)
if isinstance(self.resize_size, list):
img = F.resize(img, self.resize_size, interpolation=self.interpolation)
if not isinstance(img, Tensor):
img = F.pil_to_tensor(img)
img = F.convert_image_dtype(img, torch.float)
img = F.normalize(img, mean=self._mean, std=self._std)
img = F.normalize(img, mean=self.mean, std=self.std)
return img

def __repr__(self) -> str:
format_string = self.__class__.__name__ + "("
format_string += f"\n resize_size={self.resize_size}"
format_string += f"\n mean={self.mean}"
format_string += f"\n std={self.std}"
format_string += f"\n interpolation={self.interpolation}"
format_string += "\n)"
return format_string

def describe(self) -> str:
return (
f"The images are resized to ``resize_size={self.resize_size}`` using ``interpolation={self.interpolation}``. "
f"Then the values are rescaled to ``[0.0, 1.0]`` and normalized using ``mean={self.mean}`` and ``std={self.std}``."
)


class OpticalFlow(nn.Module):
def forward(self, img1: Tensor, img2: Tensor) -> Tuple[Tensor, Tensor]:
Expand All @@ -135,3 +190,9 @@ def forward(self, img1: Tensor, img2: Tensor) -> Tuple[Tensor, Tensor]:
img2 = img2.contiguous()

return img1, img2

def __repr__(self) -> str:
return self.__class__.__name__ + "()"

def describe(self) -> str:
return "The images are rescaled to ``[-1.0, 1.0]``."