Skip to content

make fill defaultdict an implementation detail #7258

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Feb 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions torchvision/prototype/transforms/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,8 @@ def __init__(
self.crop_height = size[0]
self.crop_width = size[1]

self.fill = _setup_fill_arg(fill)
self.fill = fill
self._fill = _setup_fill_arg(fill)

self.padding_mode = padding_mode

Expand Down Expand Up @@ -118,7 +119,7 @@ def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
)

if params["needs_pad"]:
fill = self.fill[type(inpt)]
fill = self._fill[type(inpt)]
inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode)

return inpt
43 changes: 23 additions & 20 deletions torchvision/transforms/v2/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -255,9 +255,7 @@ def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
params = super()._extract_params_for_v1_transform()

if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
raise ValueError(
f"{type(self.__name__)}() can only be scripted for a scalar `fill`, but got {self.fill} for images."
)
raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")

return params

Expand All @@ -276,11 +274,12 @@ def __init__(
if not isinstance(padding, int):
padding = list(padding)
self.padding = padding
self.fill = _setup_fill_arg(fill)
self.fill = fill
self._fill = _setup_fill_arg(fill)
self.padding_mode = padding_mode

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = self.fill[type(inpt)]
fill = self._fill[type(inpt)]
return F.pad(inpt, padding=self.padding, fill=fill, padding_mode=self.padding_mode) # type: ignore[arg-type]


Expand All @@ -293,7 +292,8 @@ def __init__(
) -> None:
super().__init__(p=p)

self.fill = _setup_fill_arg(fill)
self.fill = fill
self._fill = _setup_fill_arg(fill)

_check_sequence_input(side_range, "side_range", req_sizes=(2,))

Expand All @@ -318,7 +318,7 @@ def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
return dict(padding=padding)

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = self.fill[type(inpt)]
fill = self._fill[type(inpt)]
return F.pad(inpt, **params, fill=fill)


Expand All @@ -338,7 +338,8 @@ def __init__(
self.interpolation = _check_interpolation(interpolation)
self.expand = expand

self.fill = _setup_fill_arg(fill)
self.fill = fill
self._fill = _setup_fill_arg(fill)

if center is not None:
_check_sequence_input(center, "center", req_sizes=(2,))
Expand All @@ -350,7 +351,7 @@ def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
return dict(angle=angle)

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = self.fill[type(inpt)]
fill = self._fill[type(inpt)]
return F.rotate(
inpt,
**params,
Expand Down Expand Up @@ -395,7 +396,8 @@ def __init__(
self.shear = shear

self.interpolation = _check_interpolation(interpolation)
self.fill = _setup_fill_arg(fill)
self.fill = fill
self._fill = _setup_fill_arg(fill)

if center is not None:
_check_sequence_input(center, "center", req_sizes=(2,))
Expand Down Expand Up @@ -430,7 +432,7 @@ def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
return dict(angle=angle, translate=translate, scale=scale, shear=shear)

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = self.fill[type(inpt)]
fill = self._fill[type(inpt)]
return F.affine(
inpt,
**params,
Expand All @@ -447,9 +449,7 @@ def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
params = super()._extract_params_for_v1_transform()

if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
raise ValueError(
f"{type(self.__name__)}() can only be scripted for a scalar `fill`, but got {self.fill} for images."
)
raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")

padding = self.padding
if padding is not None:
Expand Down Expand Up @@ -478,7 +478,8 @@ def __init__(

self.padding = F._geometry._parse_pad_padding(padding) if padding else None # type: ignore[arg-type]
self.pad_if_needed = pad_if_needed
self.fill = _setup_fill_arg(fill)
self.fill = fill
self._fill = _setup_fill_arg(fill)
self.padding_mode = padding_mode

def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Expand Down Expand Up @@ -541,7 +542,7 @@ def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
if params["needs_pad"]:
fill = self.fill[type(inpt)]
fill = self._fill[type(inpt)]
inpt = F.pad(inpt, padding=params["padding"], fill=fill, padding_mode=self.padding_mode)

if params["needs_crop"]:
Expand All @@ -567,7 +568,8 @@ def __init__(

self.distortion_scale = distortion_scale
self.interpolation = _check_interpolation(interpolation)
self.fill = _setup_fill_arg(fill)
self.fill = fill
self._fill = _setup_fill_arg(fill)

def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
height, width = query_spatial_size(flat_inputs)
Expand Down Expand Up @@ -600,7 +602,7 @@ def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
return dict(coefficients=perspective_coeffs)

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = self.fill[type(inpt)]
fill = self._fill[type(inpt)]
return F.perspective(
inpt,
None,
Expand All @@ -626,7 +628,8 @@ def __init__(
self.sigma = _setup_float_or_seq(sigma, "sigma", 2)

self.interpolation = _check_interpolation(interpolation)
self.fill = _setup_fill_arg(fill)
self.fill = fill
self._fill = _setup_fill_arg(fill)

def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
size = list(query_spatial_size(flat_inputs))
Expand All @@ -652,7 +655,7 @@ def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
return dict(displacement=displacement)

def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
fill = self.fill[type(inpt)]
fill = self._fill[type(inpt)]
return F.elastic(
inpt,
**params,
Expand Down
19 changes: 3 additions & 16 deletions torchvision/transforms/v2/_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,30 +108,17 @@ def __init_subclass__(cls) -> None:

def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
# This method is called by `__prepare_scriptable__` to instantiate the equivalent v1 transform from the current
# v2 transform instance. It does two things:
# 1. Extract all available public attributes that are specific to that transform and not `nn.Module` in general
# 2. If available handle the `fill` attribute for v1 compatibility (see below for details)
# v2 transform instance. It extracts all available public attributes that are specific to that transform and
# not `nn.Module` in general.
# Overwrite this method on the v2 transform class if the above is not sufficient. For example, this might happen
# if the v2 transform introduced new parameters that are not support by the v1 transform.
common_attrs = nn.Module().__dict__.keys()
params = {
return {
attr: value
for attr, value in self.__dict__.items()
if not attr.startswith("_") and attr not in common_attrs
}

# transforms v2 has a more complex handling for the `fill` parameter than v1. By default, the input is parsed
# with `prototype.transforms._utils._setup_fill_arg()`, which returns a defaultdict that holds the fill value
# for the different datapoint types. Below we extract the value for tensors and return that together with the
# other params.
# This is needed for `Pad`, `ElasticTransform`, `RandomAffine`, `RandomCrop`, `RandomPerspective` and
# `RandomRotation`
if "fill" in params:
fill_type_defaultdict = params.pop("fill")
params["fill"] = fill_type_defaultdict[torch.Tensor]

return params

def __prepare_scriptable__(self) -> nn.Module:
# This method is called early on when `torch.jit.script`'ing an `nn.Module` instance. If it succeeds, the return
# value is used for scripting over the original object that should have been scripted. Since the v1 transforms
Expand Down