Skip to content
1 change: 1 addition & 0 deletions library/core/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,7 @@
#![feature(ip)]
#![feature(ip_bits)]
#![feature(is_ascii_octdigit)]
#![feature(isqrt)]
#![feature(maybe_uninit_uninit_array)]
#![feature(ptr_alignment_type)]
#![feature(ptr_metadata)]
Expand Down
54 changes: 54 additions & 0 deletions library/core/src/num/int_macros.rs
Original file line number Diff line number Diff line change
Expand Up @@ -898,6 +898,30 @@ macro_rules! int_impl {
acc.checked_mul(base)
}

/// Returns the square root of the number, rounded down.
///
/// Returns `None` if `self` is negative.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(isqrt)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_isqrt(), Some(3));")]
/// ```
#[unstable(feature = "isqrt", issue = "116226")]
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_isqrt(self) -> Option<Self> {
if self < 0 {
None
} else {
Some((self as $UnsignedT).isqrt() as Self)
}
}

/// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
/// bounds instead of overflowing.
///
Expand Down Expand Up @@ -2061,6 +2085,36 @@ macro_rules! int_impl {
acc * base
}

/// Returns the square root of the number, rounded down.
///
/// # Panics
///
/// This function will panic if `self` is negative.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(isqrt)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
/// ```
#[unstable(feature = "isqrt", issue = "116226")]
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn isqrt(self) -> Self {
// I would like to implement it as
// ```
// self.checked_isqrt().expect("argument of integer square root must be non-negative")
// ```
// but `expect` is not yet stable as a `const fn`.
match self.checked_isqrt() {
Some(sqrt) => sqrt,
None => panic!("argument of integer square root must be non-negative"),
}
}

/// Calculates the quotient of Euclidean division of `self` by `rhs`.
///
/// This computes the integer `q` such that `self = q * rhs + r`, with
Expand Down
48 changes: 48 additions & 0 deletions library/core/src/num/uint_macros.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1979,6 +1979,54 @@ macro_rules! uint_impl {
acc * base
}

/// Returns the square root of the number, rounded down.
///
/// # Examples
///
/// Basic usage:
/// ```
/// #![feature(isqrt)]
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
/// ```
#[unstable(feature = "isqrt", issue = "116226")]
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn isqrt(self) -> Self {
if self < 2 {
return self;
}

// The algorithm is based on the one presented in
// <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)>
// which cites as source the following C code:
// <https://web.archive.org/web/20120306040058/http://medialab.freaknet.org/martin/src/sqrt/sqrt.c>.

let mut op = self;
let mut res = 0;
let mut one = 1 << (self.ilog2() & !1);

while one != 0 {
if op >= res + one {
op -= res + one;
res = (res >> 1) + one;
} else {
res >>= 1;
}
one >>= 2;
}

// SAFETY: the result is positive and fits in an integer with half as many bits.
// Inform the optimizer about it.
unsafe {
intrinsics::assume(0 < res);
intrinsics::assume(res < 1 << (Self::BITS / 2));
}

res
}

/// Performs Euclidean division.
///
/// Since, for the positive integers, all common
Expand Down
1 change: 1 addition & 0 deletions library/core/tests/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@
#![feature(min_specialization)]
#![feature(numfmt)]
#![feature(num_midpoint)]
#![feature(isqrt)]
#![feature(step_trait)]
#![feature(str_internals)]
#![feature(std_internals)]
Expand Down
32 changes: 32 additions & 0 deletions library/core/tests/num/int_macros.rs
Original file line number Diff line number Diff line change
Expand Up @@ -290,6 +290,38 @@ macro_rules! int_module {
assert_eq!(r.saturating_pow(0), 1 as $T);
}

#[test]
fn test_isqrt() {
assert_eq!($T::MIN.checked_isqrt(), None);
assert_eq!((-1 as $T).checked_isqrt(), None);
assert_eq!((0 as $T).isqrt(), 0 as $T);
assert_eq!((1 as $T).isqrt(), 1 as $T);
assert_eq!((2 as $T).isqrt(), 1 as $T);
assert_eq!((99 as $T).isqrt(), 9 as $T);
assert_eq!((100 as $T).isqrt(), 10 as $T);
}

#[cfg(not(miri))] // Miri is too slow
#[test]
fn test_lots_of_isqrt() {
let n_max: $T = (1024 * 1024).min($T::MAX as u128) as $T;
for n in 0..=n_max {
let isqrt: $T = n.isqrt();

assert!(isqrt.pow(2) <= n);
let (square, overflow) = (isqrt + 1).overflowing_pow(2);
assert!(overflow || square > n);
}

for n in ($T::MAX - 127)..=$T::MAX {
let isqrt: $T = n.isqrt();

assert!(isqrt.pow(2) <= n);
let (square, overflow) = (isqrt + 1).overflowing_pow(2);
assert!(overflow || square > n);
}
}

#[test]
fn test_div_floor() {
let a: $T = 8;
Expand Down
29 changes: 29 additions & 0 deletions library/core/tests/num/uint_macros.rs
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,35 @@ macro_rules! uint_module {
assert_eq!(r.saturating_pow(2), MAX);
}

#[test]
fn test_isqrt() {
assert_eq!((0 as $T).isqrt(), 0 as $T);
assert_eq!((1 as $T).isqrt(), 1 as $T);
assert_eq!((2 as $T).isqrt(), 1 as $T);
assert_eq!((99 as $T).isqrt(), 9 as $T);
assert_eq!((100 as $T).isqrt(), 10 as $T);
assert_eq!($T::MAX.isqrt(), (1 << ($T::BITS / 2)) - 1);
}

#[cfg(not(miri))] // Miri is too slow
#[test]
fn test_lots_of_isqrt() {
let n_max: $T = (1024 * 1024).min($T::MAX as u128) as $T;
for n in 0..=n_max {
let isqrt: $T = n.isqrt();

assert!(isqrt.pow(2) <= n);
assert!(isqrt + 1 == (1 as $T) << ($T::BITS / 2) || (isqrt + 1).pow(2) > n);
}

for n in ($T::MAX - 255)..=$T::MAX {
let isqrt: $T = n.isqrt();

assert!(isqrt.pow(2) <= n);
assert!(isqrt + 1 == (1 as $T) << ($T::BITS / 2) || (isqrt + 1).pow(2) > n);
}
}

#[test]
fn test_div_floor() {
assert_eq!((8 as $T).div_floor(3), 2);
Expand Down