Skip to content

Improve documentation for std::io::Cursor #27163

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 22, 2015
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
149 changes: 140 additions & 9 deletions src/libstd/io/cursor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,16 +15,67 @@ use cmp;
use io::{self, SeekFrom, Error, ErrorKind};
use slice;

/// A `Cursor` is a type which wraps a non-I/O object to provide a `Seek`
/// A `Cursor` wraps another type and provides it with a [`Seek`][seek]
/// implementation.
///
/// Cursors are typically used with memory buffer objects in order to allow
/// `Seek`, `Read`, and `Write` implementations. For example, common cursor types
/// include `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
/// [seek]: trait.Seek.html
///
/// Implementations of the I/O traits for `Cursor<T>` are currently not generic
/// over `T` itself. Instead, specific implementations are provided for various
/// in-memory buffer types like `Vec<u8>` and `&[u8]`.
/// Cursors are typically used with in-memory buffers to allow them to
/// implement `Read` and/or `Write`, allowing these buffers to be used
/// anywhere you might use a reader or writer that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
///
/// # Examples
///
/// We may want to write bytes to a [`File`][file] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [file]: ../fs/struct.File.html
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
/// try!(writer.seek(SeekFrom::End(-10)));
///
/// for i in 0..10 {
/// try!(writer.write(&[i]));
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = try!(File::create("foo.txt"));
///
/// try!(write_ten_bytes_at_end(&mut file));
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much more slow than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone, Debug)]
pub struct Cursor<T> {
Expand All @@ -34,31 +85,111 @@ pub struct Cursor<T> {

impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying I/O object.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner: inner }
}

/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_inner(self) -> T { self.inner }

/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get_ref(&self) -> &T { &self.inner }

/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }

/// Returns the current value of this cursor
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn position(&self) -> u64 { self.pos }

/// Sets the value of this cursor
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
}
Expand Down