Skip to content

Run rustfmt and add doc comments to libsyntax/ext/tt/macro_parser.rs #47732

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jan 30, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
477 changes: 351 additions & 126 deletions src/libsyntax/ext/tt/macro_parser.rs
Original file line number Diff line number Diff line change
@@ -90,8 +90,8 @@ use codemap::Spanned;
use errors::FatalError;
use ext::tt::quoted::{self, TokenTree};
use parse::{Directory, ParseSess};
use parse::parser::{PathStyle, Parser};
use parse::token::{self, DocComment, Token, Nonterminal};
use parse::parser::{Parser, PathStyle};
use parse::token::{self, DocComment, Nonterminal, Token};
use print::pprust;
use symbol::keywords;
use tokenstream::TokenStream;
@@ -100,25 +100,29 @@ use util::small_vector::SmallVector;
use std::mem;
use std::rc::Rc;
use std::collections::HashMap;
use std::collections::hash_map::Entry::{Vacant, Occupied};
use std::collections::hash_map::Entry::{Occupied, Vacant};

// To avoid costly uniqueness checks, we require that `MatchSeq` always has
// a nonempty body.
// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body.

/// Either a sequence of token trees or a single one. This is used as the representation of the
/// sequence of tokens that make up a matcher.
#[derive(Clone)]
enum TokenTreeOrTokenTreeVec {
Tt(TokenTree),
TtSeq(Vec<TokenTree>),
}

impl TokenTreeOrTokenTreeVec {
/// Returns the number of constituent top-level token trees of `self` (top-level in that it
/// will not recursively descend into subtrees).
fn len(&self) -> usize {
match *self {
TtSeq(ref v) => v.len(),
Tt(ref tt) => tt.len(),
}
}

/// The the `index`-th token tree of `self`.
fn get_tt(&self, index: usize) -> TokenTree {
match *self {
TtSeq(ref v) => v[index].clone(),
@@ -127,36 +131,96 @@ impl TokenTreeOrTokenTreeVec {
}
}

/// an unzipping of `TokenTree`s
/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`.
///
/// This is used by `inner_parse_loop` to keep track of delimited submatchers that we have
/// descended into.
#[derive(Clone)]
struct MatcherTtFrame {
/// The "parent" matcher that we are descending into.
elts: TokenTreeOrTokenTreeVec,
/// The position of the "dot" in `elts` at the time we descended.
idx: usize,
}

/// Represents a single "position" (aka "matcher position", aka "item"), as described in the module
/// documentation.
#[derive(Clone)]
struct MatcherPos {
stack: Vec<MatcherTtFrame>,
/// The token or sequence of tokens that make up the matcher
top_elts: TokenTreeOrTokenTreeVec,
sep: Option<Token>,
/// The position of the "dot" in this matcher
idx: usize,
up: Option<Box<MatcherPos>>,
/// The beginning position in the source that the beginning of this matcher corresponds to. In
/// other words, the token in the source at `sp_lo` is matched against the first token of the
/// matcher.
sp_lo: BytePos,

/// For each named metavar in the matcher, we keep track of token trees matched against the
/// metavar by the black box parser. In particular, there may be more than one match per
/// metavar if we are in a repetition (each repetition matches each of the variables).
/// Moreover, matchers and repetitions can be nested; the `matches` field is shared (hence the
/// `Rc`) among all "nested" matchers. `match_lo`, `match_cur`, and `match_hi` keep track of
/// the current position of the `self` matcher position in the shared `matches` list.
///
/// Also, note that while we are descending into a sequence, matchers are given their own
/// `matches` vector. Only once we reach the end of a full repetition of the sequence do we add
/// all bound matches from the submatcher into the shared top-level `matches` vector. If `sep`
/// and `up` are `Some`, then `matches` is _not_ the shared top-level list. Instead, if one
/// wants the shared `matches`, one should use `up.matches`.
matches: Vec<Rc<Vec<NamedMatch>>>,
/// The position in `matches` corresponding to the first metavar in this matcher's sequence of
/// token trees. In other words, the first metavar in the first token of `top_elts` corresponds
/// to `matches[match_lo]`.
match_lo: usize,
/// The position in `matches` corresponding to the metavar we are currently trying to match
/// against the source token stream. `match_lo <= match_cur <= match_hi`.
match_cur: usize,
/// Similar to `match_lo` except `match_hi` is the position in `matches` of the _last_ metavar
/// in this matcher.
match_hi: usize,
sp_lo: BytePos,

// Specifically used if we are matching a repetition. If we aren't both should be `None`.
/// The separator if we are in a repetition
sep: Option<Token>,
/// The "parent" matcher position if we are in a repetition. That is, the matcher position just
/// before we enter the sequence.
up: Option<Box<MatcherPos>>,

// Specifically used to "unzip" token trees. By "unzip", we mean to unwrap the delimiters from
// a delimited token tree (e.g. something wrapped in `(` `)`) or to get the contents of a doc
// comment...
/// When matching against matchers with nested delimited submatchers (e.g. `pat ( pat ( .. )
/// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does
/// that where the bottom of the stack is the outermost matcher.
// Also, throughout the comments, this "descent" is often referred to as "unzipping"...
stack: Vec<MatcherTtFrame>,
}

impl MatcherPos {
/// Add `m` as a named match for the `idx`-th metavar.
fn push_match(&mut self, idx: usize, m: NamedMatch) {
let matches = Rc::make_mut(&mut self.matches[idx]);
matches.push(m);
}
}

/// Represents the possible results of an attempted parse.
pub enum ParseResult<T> {
/// Parsed successfully.
Success(T),
/// Arm failed to match. If the second parameter is `token::Eof`, it indicates an unexpected
/// end of macro invocation. Otherwise, it indicates that no rules expected the given token.
Failure(syntax_pos::Span, Token),
/// Fatal error (malformed macro?). Abort compilation.
Error(syntax_pos::Span, String),
}

/// A `ParseResult` where the `Success` variant contains a mapping of `Ident`s to `NamedMatch`es.
/// This represents the mapping of metavars to the token trees they bind to.
pub type NamedParseResult = ParseResult<HashMap<Ident, Rc<NamedMatch>>>;

/// Count how many metavars are named in the given matcher `ms`.
pub fn count_names(ms: &[TokenTree]) -> usize {
ms.iter().fold(0, |count, elt| {
count + match *elt {
@@ -169,20 +233,38 @@ pub fn count_names(ms: &[TokenTree]) -> usize {
})
}

/// Initialize `len` empty shared `Vec`s to be used to store matches of metavars.
fn create_matches(len: usize) -> Vec<Rc<Vec<NamedMatch>>> {
(0..len).into_iter().map(|_| Rc::new(Vec::new())).collect()
}

/// Generate the top-level matcher position in which the "dot" is before the first token of the
/// matcher `ms` and we are going to start matching at position `lo` in the source.
fn initial_matcher_pos(ms: Vec<TokenTree>, lo: BytePos) -> Box<MatcherPos> {
let match_idx_hi = count_names(&ms[..]);
let matches = create_matches(match_idx_hi);
Box::new(MatcherPos {
stack: vec![],
top_elts: TtSeq(ms),
sep: None,
// Start with the top level matcher given to us
top_elts: TtSeq(ms), // "elts" is an abbr. for "elements"
// The "dot" is before the first token of the matcher
idx: 0,
up: None,
// We start matching with byte `lo` in the source code
sp_lo: lo,

// Initialize `matches` to a bunch of empty `Vec`s -- one for each metavar in `top_elts`.
// `match_lo` for `top_elts` is 0 and `match_hi` is `matches.len()`. `match_cur` is 0 since
// we haven't actually matched anything yet.
matches,
match_lo: 0,
match_cur: 0,
match_hi: match_idx_hi,
sp_lo: lo

// Haven't descended into any delimiters, so empty stack
stack: vec![],

// Haven't descended into any sequences, so both of these are `None`.
sep: None,
up: None,
})
}

@@ -202,29 +284,36 @@ fn initial_matcher_pos(ms: Vec<TokenTree>, lo: BytePos) -> Box<MatcherPos> {
/// token tree. The depth of the `NamedMatch` structure will therefore depend
/// only on the nesting depth of `ast::TTSeq`s in the originating
/// token tree it was derived from.
#[derive(Debug, Clone)]
pub enum NamedMatch {
MatchedSeq(Rc<Vec<NamedMatch>>, syntax_pos::Span),
MatchedNonterminal(Rc<Nonterminal>)
MatchedNonterminal(Rc<Nonterminal>),
}

fn nameize<I: Iterator<Item=NamedMatch>>(sess: &ParseSess, ms: &[TokenTree], mut res: I)
-> NamedParseResult {
fn n_rec<I: Iterator<Item=NamedMatch>>(sess: &ParseSess, m: &TokenTree, res: &mut I,
ret_val: &mut HashMap<Ident, Rc<NamedMatch>>)
-> Result<(), (syntax_pos::Span, String)> {
/// Takes a sequence of token trees `ms` representing a matcher which successfully matched input
/// and an iterator of items that matched input and produces a `NamedParseResult`.
fn nameize<I: Iterator<Item = NamedMatch>>(
sess: &ParseSess,
ms: &[TokenTree],
mut res: I,
) -> NamedParseResult {
// Recursively descend into each type of matcher (e.g. sequences, delimited, metavars) and make
// sure that each metavar has _exactly one_ binding. If a metavar does not have exactly one
// binding, then there is an error. If it does, then we insert the binding into the
// `NamedParseResult`.
fn n_rec<I: Iterator<Item = NamedMatch>>(
sess: &ParseSess,
m: &TokenTree,
res: &mut I,
ret_val: &mut HashMap<Ident, Rc<NamedMatch>>,
) -> Result<(), (syntax_pos::Span, String)> {
match *m {
TokenTree::Sequence(_, ref seq) => {
for next_m in &seq.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?
}
}
TokenTree::Delimited(_, ref delim) => {
for next_m in &delim.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?;
}
}
TokenTree::Sequence(_, ref seq) => for next_m in &seq.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?
},
TokenTree::Delimited(_, ref delim) => for next_m in &delim.tts {
n_rec(sess, next_m, res.by_ref(), ret_val)?;
},
TokenTree::MetaVarDecl(span, _, id) if id.name == keywords::Invalid.name() => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
return Err((span, "missing fragment specifier".to_string()));
@@ -250,33 +339,28 @@ fn nameize<I: Iterator<Item=NamedMatch>>(sess: &ParseSess, ms: &[TokenTree], mut
let mut ret_val = HashMap::new();
for m in ms {
match n_rec(sess, m, res.by_ref(), &mut ret_val) {
Ok(_) => {},
Ok(_) => {}
Err((sp, msg)) => return Error(sp, msg),
}
}

Success(ret_val)
}

pub enum ParseResult<T> {
Success(T),
/// Arm failed to match. If the second parameter is `token::Eof`, it
/// indicates an unexpected end of macro invocation. Otherwise, it
/// indicates that no rules expected the given token.
Failure(syntax_pos::Span, Token),
/// Fatal error (malformed macro?). Abort compilation.
Error(syntax_pos::Span, String)
}

/// Generate an appropriate parsing failure message. For EOF, this is "unexpected end...". For
/// other tokens, this is "unexpected token...".
pub fn parse_failure_msg(tok: Token) -> String {
match tok {
token::Eof => "unexpected end of macro invocation".to_string(),
_ => format!("no rules expected the token `{}`", pprust::token_to_string(&tok)),
_ => format!(
"no rules expected the token `{}`",
pprust::token_to_string(&tok)
),
}
}

/// Perform a token equality check, ignoring syntax context (that is, an unhygienic comparison)
fn token_name_eq(t1 : &Token, t2 : &Token) -> bool {
fn token_name_eq(t1: &Token, t2: &Token) -> bool {
if let (Some(id1), Some(id2)) = (t1.ident(), t2.ident()) {
id1.name == id2.name
} else if let (&token::Lifetime(id1), &token::Lifetime(id2)) = (t1, t2) {
@@ -286,77 +370,121 @@ fn token_name_eq(t1 : &Token, t2 : &Token) -> bool {
}
}

fn create_matches(len: usize) -> Vec<Rc<Vec<NamedMatch>>> {
(0..len).into_iter().map(|_| Rc::new(Vec::new())).collect()
}

fn inner_parse_loop(sess: &ParseSess,
cur_items: &mut SmallVector<Box<MatcherPos>>,
next_items: &mut Vec<Box<MatcherPos>>,
eof_items: &mut SmallVector<Box<MatcherPos>>,
bb_items: &mut SmallVector<Box<MatcherPos>>,
token: &Token,
span: syntax_pos::Span)
-> ParseResult<()> {
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
/// produce more items in `next_items`, `eof_items`, and `bb_items`.
///
/// For more info about the how this happens, see the module-level doc comments and the inline
/// comments of this function.
///
/// # Parameters
///
/// - `sess`: the parsing session into which errors are emitted.
/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
/// successful execution of this function.
/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
/// the function `parse`.
/// - `eof_items`: the set of items that would be valid if this was the EOF.
/// - `bb_items`: the set of items that are waiting for the black-box parser.
/// - `token`: the current token of the parser.
/// - `span`: the `Span` in the source code corresponding to the token trees we are trying to match
/// against the matcher positions in `cur_items`.
///
/// # Returns
///
/// A `ParseResult`. Note that matches are kept track of through the items generated.
fn inner_parse_loop(
sess: &ParseSess,
cur_items: &mut SmallVector<Box<MatcherPos>>,
next_items: &mut Vec<Box<MatcherPos>>,
eof_items: &mut SmallVector<Box<MatcherPos>>,
bb_items: &mut SmallVector<Box<MatcherPos>>,
token: &Token,
span: syntax_pos::Span,
) -> ParseResult<()> {
// Pop items from `cur_items` until it is empty.
while let Some(mut item) = cur_items.pop() {
// When unzipped trees end, remove them
// When unzipped trees end, remove them. This corresponds to backtracking out of a
// delimited submatcher into which we already descended. In backtracking out again, we need
// to advance the "dot" past the delimiters in the outer matcher.
while item.idx >= item.top_elts.len() {
match item.stack.pop() {
Some(MatcherTtFrame { elts, idx }) => {
item.top_elts = elts;
item.idx = idx + 1;
}
None => break
None => break,
}
}

// Get the current position of the "dot" (`idx`) in `item` and the number of token trees in
// the matcher (`len`).
let idx = item.idx;
let len = item.top_elts.len();

// at end of sequence
// If `idx >= len`, then we are at or past the end of the matcher of `item`.
if idx >= len {
// We are repeating iff there is a parent
// We are repeating iff there is a parent. If the matcher is inside of a repetition,
// then we could be at the end of a sequence or at the beginning of the next
// repetition.
if item.up.is_some() {
// Disregarding the separator, add the "up" case to the tokens that should be
// examined.
// (remove this condition to make trailing seps ok)
// At this point, regardless of whether there is a separator, we should add all
// matches from the complete repetition of the sequence to the shared, top-level
// `matches` list (actually, `up.matches`, which could itself not be the top-level,
// but anyway...). Moreover, we add another item to `cur_items` in which the "dot"
// is at the end of the `up` matcher. This ensures that the "dot" in the `up`
// matcher is also advanced sufficiently.
//
// NOTE: removing the condition `idx == len` allows trailing separators.
if idx == len {
// Get the `up` matcher
let mut new_pos = item.up.clone().unwrap();

// update matches (the MBE "parse tree") by appending
// each tree as a subtree.

// Only touch the binders we have actually bound
// Add matches from this repetition to the `matches` of `up`
for idx in item.match_lo..item.match_hi {
let sub = item.matches[idx].clone();
let span = span.with_lo(item.sp_lo);
new_pos.push_match(idx, MatchedSeq(sub, span));
}

// Move the "dot" past the repetition in `up`
new_pos.match_cur = item.match_hi;
new_pos.idx += 1;
cur_items.push(new_pos);
}

// Check if we need a separator
// Check if we need a separator.
if idx == len && item.sep.is_some() {
// We have a separator, and it is the current token.
if item.sep.as_ref().map(|sep| token_name_eq(token, sep)).unwrap_or(false) {
// We have a separator, and it is the current token. We can advance past the
// separator token.
if item.sep
.as_ref()
.map(|sep| token_name_eq(token, sep))
.unwrap_or(false)
{
item.idx += 1;
next_items.push(item);
}
} else { // we don't need a separator
}
// We don't need a separator. Move the "dot" back to the beginning of the matcher
// and try to match again.
else {
item.match_cur = item.match_lo;
item.idx = 0;
cur_items.push(item);
}
} else {
// We aren't repeating, so we must be potentially at the end of the input.
}
// If we are not in a repetition, then being at the end of a matcher means that we have
// reached the potential end of the input.
else {
eof_items.push(item);
}
} else {
}
// We are in the middle of a matcher.
else {
// Look at what token in the matcher we are trying to match the current token (`token`)
// against. Depending on that, we may generate new items.
match item.top_elts.get_tt(idx) {
/* need to descend into sequence */
// Need to descend into a sequence
TokenTree::Sequence(sp, seq) => {
if seq.op == quoted::KleeneOp::ZeroOrMore {
// Examine the case where there are 0 matches of this sequence
@@ -384,18 +512,30 @@ fn inner_parse_loop(sess: &ParseSess,
top_elts: Tt(TokenTree::Sequence(sp, seq)),
}));
}

// We need to match a metavar (but the identifier is invalid)... this is an error
TokenTree::MetaVarDecl(span, _, id) if id.name == keywords::Invalid.name() => {
if sess.missing_fragment_specifiers.borrow_mut().remove(&span) {
return Error(span, "missing fragment specifier".to_string());
}
}

// We need to match a metavar with a valid ident... call out to the black-box
// parser by adding an item to `bb_items`.
TokenTree::MetaVarDecl(_, _, id) => {
// Built-in nonterminals never start with these tokens,
// so we can eliminate them from consideration.
if may_begin_with(&*id.name.as_str(), token) {
bb_items.push(item);
}
}

// We need to descend into a delimited submatcher or a doc comment. To do this, we
// push the current matcher onto a stack and push a new item containing the
// submatcher onto `cur_items`.
//
// At the beginning of the loop, if we reach the end of the delimited submatcher,
// we pop the stack to backtrack out of the descent.
seq @ TokenTree::Delimited(..) | seq @ TokenTree::Token(_, DocComment(..)) => {
let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
let idx = item.idx;
@@ -406,83 +546,152 @@ fn inner_parse_loop(sess: &ParseSess,
item.idx = 0;
cur_items.push(item);
}

// We just matched a normal token. We can just advance the parser.
TokenTree::Token(_, ref t) if token_name_eq(t, token) => {
item.idx += 1;
next_items.push(item);
}

// There was another token that was not `token`... This means we can't add any
// rules. NOTE that this is not necessarily an error unless _all_ items in
// `cur_items` end up doing this. There may still be some other matchers that do
// end up working out.
TokenTree::Token(..) | TokenTree::MetaVar(..) => {}
}
}
}

// Yay a successful parse (so far)!
Success(())
}

pub fn parse(sess: &ParseSess,
tts: TokenStream,
ms: &[TokenTree],
directory: Option<Directory>,
recurse_into_modules: bool)
-> NamedParseResult {
/// Use the given sequence of token trees (`ms`) as a matcher. Match the given token stream `tts`
/// against it and return the match.
///
/// # Parameters
///
/// - `sess`: The session into which errors are emitted
/// - `tts`: The tokenstream we are matching against the pattern `ms`
/// - `ms`: A sequence of token trees representing a pattern against which we are matching
/// - `directory`: Information about the file locations (needed for the black-box parser)
/// - `recurse_into_modules`: Whether or not to recurse into modules (needed for the black-box
/// parser)
pub fn parse(
sess: &ParseSess,
tts: TokenStream,
ms: &[TokenTree],
directory: Option<Directory>,
recurse_into_modules: bool,
) -> NamedParseResult {
// Create a parser that can be used for the "black box" parts.
let mut parser = Parser::new(sess, tts, directory, recurse_into_modules, true);

// A queue of possible matcher positions. We initialize it with the matcher position in which
// the "dot" is before the first token of the first token tree in `ms`. `inner_parse_loop` then
// processes all of these possible matcher positions and produces posible next positions into
// `next_items`. After some post-processing, the contents of `next_items` replenish `cur_items`
// and we start over again.
let mut cur_items = SmallVector::one(initial_matcher_pos(ms.to_owned(), parser.span.lo()));
let mut next_items = Vec::new(); // or proceed normally
let mut next_items = Vec::new();

loop {
let mut bb_items = SmallVector::new(); // black-box parsed by parser.rs
// Matcher positions black-box parsed by parser.rs (`parser`)
let mut bb_items = SmallVector::new();

// Matcher positions that would be valid if the macro invocation was over now
let mut eof_items = SmallVector::new();
assert!(next_items.is_empty());

match inner_parse_loop(sess, &mut cur_items, &mut next_items, &mut eof_items, &mut bb_items,
&parser.token, parser.span) {
Success(_) => {},
// Process `cur_items` until either we have finished the input or we need to get some
// parsing from the black-box parser done. The result is that `next_items` will contain a
// bunch of possible next matcher positions in `next_items`.
match inner_parse_loop(
sess,
&mut cur_items,
&mut next_items,
&mut eof_items,
&mut bb_items,
&parser.token,
parser.span,
) {
Success(_) => {}
Failure(sp, tok) => return Failure(sp, tok),
Error(sp, msg) => return Error(sp, msg),
}

// inner parse loop handled all cur_items, so it's empty
assert!(cur_items.is_empty());

/* error messages here could be improved with links to orig. rules */
// We need to do some post processing after the `inner_parser_loop`.
//
// Error messages here could be improved with links to original rules.

// If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise,
// either the parse is ambiguous (which should never happen) or their is a syntax error.
if token_name_eq(&parser.token, &token::Eof) {
if eof_items.len() == 1 {
let matches = eof_items[0].matches.iter_mut().map(|dv| {
Rc::make_mut(dv).pop().unwrap()
});
let matches = eof_items[0]
.matches
.iter_mut()
.map(|dv| Rc::make_mut(dv).pop().unwrap());
return nameize(sess, ms, matches);
} else if eof_items.len() > 1 {
return Error(parser.span, "ambiguity: multiple successful parses".to_string());
return Error(
parser.span,
"ambiguity: multiple successful parses".to_string(),
);
} else {
return Failure(parser.span, token::Eof);
}
} else if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
let nts = bb_items.iter().map(|item| match item.top_elts.get_tt(item.idx) {
TokenTree::MetaVarDecl(_, bind, name) => {
format!("{} ('{}')", name, bind)
}
_ => panic!()
}).collect::<Vec<String>>().join(" or ");

return Error(parser.span, format!(
"local ambiguity: multiple parsing options: {}",
match next_items.len() {
0 => format!("built-in NTs {}.", nts),
1 => format!("built-in NTs {} or 1 other option.", nts),
n => format!("built-in NTs {} or {} other options.", nts, n),
}
));
} else if bb_items.is_empty() && next_items.is_empty() {
}
// Another possibility is that we need to call out to parse some rust nonterminal
// (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong.
else if (!bb_items.is_empty() && !next_items.is_empty()) || bb_items.len() > 1 {
let nts = bb_items
.iter()
.map(|item| match item.top_elts.get_tt(item.idx) {
TokenTree::MetaVarDecl(_, bind, name) => format!("{} ('{}')", name, bind),
_ => panic!(),
})
.collect::<Vec<String>>()
.join(" or ");

return Error(
parser.span,
format!(
"local ambiguity: multiple parsing options: {}",
match next_items.len() {
0 => format!("built-in NTs {}.", nts),
1 => format!("built-in NTs {} or 1 other option.", nts),
n => format!("built-in NTs {} or {} other options.", nts, n),
}
),
);
}
// If there are no posible next positions AND we aren't waiting for the black-box parser,
// then their is a syntax error.
else if bb_items.is_empty() && next_items.is_empty() {
return Failure(parser.span, parser.token);
} else if !next_items.is_empty() {
/* Now process the next token */
}
// Dump all possible `next_items` into `cur_items` for the next iteration.
else if !next_items.is_empty() {
// Now process the next token
cur_items.extend(next_items.drain(..));
parser.bump();
} else /* bb_items.len() == 1 */ {
}
// Finally, we have the case where we need to call the black-box parser to get some
// nonterminal.
else {
assert_eq!(bb_items.len(), 1);

let mut item = bb_items.pop().unwrap();
if let TokenTree::MetaVarDecl(span, _, ident) = item.top_elts.get_tt(item.idx) {
let match_cur = item.match_cur;
item.push_match(match_cur,
MatchedNonterminal(Rc::new(parse_nt(&mut parser, span, &ident.name.as_str()))));
item.push_match(
match_cur,
MatchedNonterminal(Rc::new(parse_nt(&mut parser, span, &ident.name.as_str()))),
);
item.idx += 1;
item.match_cur += 1;
} else {
@@ -512,20 +721,21 @@ fn may_begin_with(name: &str, token: &Token) -> bool {
"expr" => token.can_begin_expr(),
"ty" => token.can_begin_type(),
"ident" => token.is_ident(),
"vis" => match *token { // The follow-set of :vis + "priv" keyword + interpolated
"vis" => match *token {
// The follow-set of :vis + "priv" keyword + interpolated
Token::Comma | Token::Ident(_) | Token::Interpolated(_) => true,
_ => token.can_begin_type(),
},
"block" => match *token {
Token::OpenDelim(token::Brace) => true,
Token::Interpolated(ref nt) => match nt.0 {
token::NtItem(_) |
token::NtPat(_) |
token::NtTy(_) |
token::NtIdent(_) |
token::NtMeta(_) |
token::NtPath(_) |
token::NtVis(_) => false, // none of these may start with '{'.
token::NtItem(_)
| token::NtPat(_)
| token::NtTy(_)
| token::NtIdent(_)
| token::NtMeta(_)
| token::NtPath(_)
| token::NtVis(_) => false, // none of these may start with '{'.
_ => true,
},
_ => false,
@@ -562,6 +772,18 @@ fn may_begin_with(name: &str, token: &Token) -> bool {
}
}

/// A call to the "black-box" parser to parse some rust nonterminal.
///
/// # Parameters
///
/// - `p`: the "black-box" parser to use
/// - `sp`: the `Span` we want to parse
/// - `name`: the name of the metavar _matcher_ we want to match (e.g. `tt`, `ident`, `block`,
/// etc...)
///
/// # Returns
///
/// The parsed nonterminal.
fn parse_nt<'a>(p: &mut Parser<'a>, sp: Span, name: &str) -> Nonterminal {
if name == "tt" {
return token::NtTT(p.parse_token_tree());
@@ -591,12 +813,15 @@ fn parse_nt<'a>(p: &mut Parser<'a>, sp: Span, name: &str) -> Nonterminal {
"ident" => match p.token {
token::Ident(sn) => {
p.bump();
token::NtIdent(Spanned::<Ident>{node: sn, span: p.prev_span})
token::NtIdent(Spanned::<Ident> {
node: sn,
span: p.prev_span,
})
}
_ => {
let token_str = pprust::token_to_string(&p.token);
p.fatal(&format!("expected ident, found {}",
&token_str[..])).emit();
p.fatal(&format!("expected ident, found {}", &token_str[..]))
.emit();
FatalError.raise()
}
},
@@ -606,6 +831,6 @@ fn parse_nt<'a>(p: &mut Parser<'a>, sp: Span, name: &str) -> Nonterminal {
"lifetime" => token::NtLifetime(p.expect_lifetime()),
// this is not supposed to happen, since it has been checked
// when compiling the macro.
_ => p.span_bug(sp, "invalid fragment specifier")
_ => p.span_bug(sp, "invalid fragment specifier"),
}
}