Skip to content

LU decomposition based algorithms using LAPACK #213

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions lax/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,7 @@ pub mod layout;
pub mod least_squares;
pub mod opnorm;
pub mod qr;
pub mod rcond;
pub mod solve;
pub mod solveh;
pub mod svd;
Expand All @@ -83,6 +84,7 @@ pub use self::eigh::*;
pub use self::least_squares::*;
pub use self::opnorm::*;
pub use self::qr::*;
pub use self::rcond::*;
pub use self::solve::*;
pub use self::solveh::*;
pub use self::svd::*;
Expand All @@ -107,6 +109,7 @@ pub trait Lapack:
+ Eigh_
+ Triangular_
+ Tridiagonal_
+ Rcond_
{
}

Expand Down
86 changes: 86 additions & 0 deletions lax/src/rcond.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
use super::*;
use crate::{error::*, layout::MatrixLayout};
use cauchy::*;
use num_traits::Zero;

pub trait Rcond_: Scalar + Sized {
/// Estimates the the reciprocal of the condition number of the matrix in 1-norm.
///
/// `anorm` should be the 1-norm of the matrix `a`.
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real>;
}

macro_rules! impl_rcond_real {
($scalar:ty, $gecon:path) => {
impl Rcond_ for $scalar {
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real> {
let (n, _) = l.size();
let mut rcond = Self::Real::zero();
let mut info = 0;

let mut work = vec![Self::zero(); 4 * n as usize];
let mut iwork = vec![0; n as usize];
let norm_type = match l {
MatrixLayout::C { .. } => NormType::Infinity,
MatrixLayout::F { .. } => NormType::One,
} as u8;
unsafe {
$gecon(
norm_type,
n,
a,
l.lda(),
anorm,
&mut rcond,
&mut work,
&mut iwork,
&mut info,
)
};
info.as_lapack_result()?;

Ok(rcond)
}
}
};
}

impl_rcond_real!(f32, lapack::sgecon);
impl_rcond_real!(f64, lapack::dgecon);

macro_rules! impl_rcond_complex {
($scalar:ty, $gecon:path) => {
impl Rcond_ for $scalar {
fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real> {
let (n, _) = l.size();
let mut rcond = Self::Real::zero();
let mut info = 0;
let mut work = vec![Self::zero(); 2 * n as usize];
let mut rwork = vec![Self::Real::zero(); 2 * n as usize];
let norm_type = match l {
MatrixLayout::C { .. } => NormType::Infinity,
MatrixLayout::F { .. } => NormType::One,
} as u8;
unsafe {
$gecon(
norm_type,
n,
a,
l.lda(),
anorm,
&mut rcond,
&mut work,
&mut rwork,
&mut info,
)
};
info.as_lapack_result()?;

Ok(rcond)
}
}
};
}

impl_rcond_complex!(c32, lapack::cgecon);
impl_rcond_complex!(c64, lapack::zgecon);
144 changes: 62 additions & 82 deletions lax/src/solve.rs
Original file line number Diff line number Diff line change
Expand Up @@ -3,119 +3,99 @@
use super::*;
use crate::{error::*, layout::MatrixLayout};
use cauchy::*;
use num_traits::Zero;
use num_traits::{ToPrimitive, Zero};

/// Wraps `*getrf`, `*getri`, and `*getrs`
pub trait Solve_: Scalar + Sized {
/// Computes the LU factorization of a general `m x n` matrix `a` using
/// partial pivoting with row interchanges.
///
/// If the result matches `Err(LinalgError::Lapack(LapackError {
/// return_code )) if return_code > 0`, then `U[(return_code-1,
/// return_code-1)]` is exactly zero. The factorization has been completed,
/// but the factor `U` is exactly singular, and division by zero will occur
/// if it is used to solve a system of equations.
unsafe fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot>;
unsafe fn inv(l: MatrixLayout, a: &mut [Self], p: &Pivot) -> Result<()>;
/// Estimates the the reciprocal of the condition number of the matrix in 1-norm.
/// $ PA = LU $
///
/// `anorm` should be the 1-norm of the matrix `a`.
unsafe fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real>;
unsafe fn solve(
l: MatrixLayout,
t: Transpose,
a: &[Self],
p: &Pivot,
b: &mut [Self],
) -> Result<()>;
/// Error
/// ------
/// - `LapackComputationalFailure { return_code }` when the matrix is singular
/// - Division by zero will occur if it is used to solve a system of equations
/// because `U[(return_code-1, return_code-1)]` is exactly zero.
fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot>;

fn inv(l: MatrixLayout, a: &mut [Self], p: &Pivot) -> Result<()>;

fn solve(l: MatrixLayout, t: Transpose, a: &[Self], p: &Pivot, b: &mut [Self]) -> Result<()>;
}

macro_rules! impl_solve {
($scalar:ty, $getrf:path, $getri:path, $gecon:path, $getrs:path) => {
($scalar:ty, $getrf:path, $getri:path, $getrs:path) => {
impl Solve_ for $scalar {
unsafe fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot> {
fn lu(l: MatrixLayout, a: &mut [Self]) -> Result<Pivot> {
let (row, col) = l.size();
assert_eq!(a.len() as i32, row * col);
if row == 0 || col == 0 {
// Do nothing for empty matrix
return Ok(Vec::new());
}
let k = ::std::cmp::min(row, col);
let mut ipiv = vec![0; k as usize];
$getrf(l.lapacke_layout(), row, col, a, l.lda(), &mut ipiv).as_lapack_result()?;
let mut info = 0;
unsafe { $getrf(l.lda(), l.len(), a, l.lda(), &mut ipiv, &mut info) };
info.as_lapack_result()?;
Ok(ipiv)
}

unsafe fn inv(l: MatrixLayout, a: &mut [Self], ipiv: &Pivot) -> Result<()> {
fn inv(l: MatrixLayout, a: &mut [Self], ipiv: &Pivot) -> Result<()> {
let (n, _) = l.size();
$getri(l.lapacke_layout(), n, a, l.lda(), ipiv).as_lapack_result()?;
Ok(())
}

unsafe fn rcond(l: MatrixLayout, a: &[Self], anorm: Self::Real) -> Result<Self::Real> {
let (n, _) = l.size();
let mut rcond = Self::Real::zero();
$gecon(
l.lapacke_layout(),
NormType::One as u8,
n,
a,
l.lda(),
anorm,
&mut rcond,
)
.as_lapack_result()?;
Ok(rcond)
// calc work size
let mut info = 0;
let mut work_size = [Self::zero()];
unsafe { $getri(n, a, l.lda(), ipiv, &mut work_size, -1, &mut info) };
info.as_lapack_result()?;

// actual
let lwork = work_size[0].to_usize().unwrap();
let mut work = vec![Self::zero(); lwork];
unsafe {
$getri(
l.len(),
a,
l.lda(),
ipiv,
&mut work,
lwork as i32,
&mut info,
)
};
info.as_lapack_result()?;

Ok(())
}

unsafe fn solve(
fn solve(
l: MatrixLayout,
t: Transpose,
a: &[Self],
ipiv: &Pivot,
b: &mut [Self],
) -> Result<()> {
let t = match l {
MatrixLayout::C { .. } => match t {
Transpose::No => Transpose::Transpose,
Transpose::Transpose | Transpose::Hermite => Transpose::No,
},
_ => t,
};
let (n, _) = l.size();
let nrhs = 1;
let ldb = 1;
$getrs(
l.lapacke_layout(),
t as u8,
n,
nrhs,
a,
l.lda(),
ipiv,
b,
ldb,
)
.as_lapack_result()?;
let ldb = l.lda();
let mut info = 0;
unsafe { $getrs(t as u8, n, nrhs, a, l.lda(), ipiv, b, ldb, &mut info) };
info.as_lapack_result()?;
Ok(())
}
}
};
} // impl_solve!

impl_solve!(
f64,
lapacke::dgetrf,
lapacke::dgetri,
lapacke::dgecon,
lapacke::dgetrs
);
impl_solve!(
f32,
lapacke::sgetrf,
lapacke::sgetri,
lapacke::sgecon,
lapacke::sgetrs
);
impl_solve!(
c64,
lapacke::zgetrf,
lapacke::zgetri,
lapacke::zgecon,
lapacke::zgetrs
);
impl_solve!(
c32,
lapacke::cgetrf,
lapacke::cgetri,
lapacke::cgecon,
lapacke::cgetrs
);
impl_solve!(f64, lapack::dgetrf, lapack::dgetri, lapack::dgetrs);
impl_solve!(f32, lapack::sgetrf, lapack::sgetri, lapack::sgetrs);
impl_solve!(c64, lapack::zgetrf, lapack::zgetri, lapack::zgetrs);
impl_solve!(c32, lapack::cgetrf, lapack::cgetri, lapack::cgetrs);
Loading