Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 99 additions & 3 deletions complex/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline]
pub fn exp(&self) -> Complex<T> {
// formula: e^(a + bi) = e^a (cos(b) + i*sin(b))
Complex::new(self.im.cos(), self.im.sin()).scale(self.re.exp())
// = from_polar(e^a, b)
Complex::from_polar(&self.re.exp(), &self.im)
}

/// Computes the principal value of natural logarithm of `self`.
Expand All @@ -133,7 +134,8 @@ impl<T: Clone + Float> Complex<T> {
#[inline]
pub fn ln(&self) -> Complex<T> {
// formula: ln(z) = ln|z| + i*arg(z)
Complex::new(self.norm().ln(), self.arg())
let (r, theta) = self.to_polar();
Complex::new(r.ln(), theta)
}

/// Computes the principal value of the square root of `self`.
Expand All @@ -150,6 +152,53 @@ impl<T: Clone + Float> Complex<T> {
let (r, theta) = self.to_polar();
Complex::from_polar(&(r.sqrt()), &(theta/two))
}

/// Raises `self` to a floating point power.
#[inline]
pub fn powf(&self, exp: T) -> Complex<T> {
// formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
// = from_polar(ρ^y, θ y)
let (r, theta) = self.to_polar();
Complex::from_polar(&r.powf(exp), &(theta*exp))
}

/// Returns the logarithm of `self` with respect to an arbitrary base.
#[inline]
pub fn log(&self, base: T) -> Complex<T> {
// formula: log_y(x) = log_y(ρ e^(i θ))
// = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
// = log_y(ρ) + i θ / ln(y)
let (r, theta) = self.to_polar();
Complex::new(r.log(base), theta / base.ln())
}

/// Raises `self` to a complex power.
#[inline]
pub fn powc(&self, exp: Complex<T>) -> Complex<T> {
// formula: x^y = (a + i b)^(c + i d)
// = (ρ e^(i θ))^c (ρ e^(i θ))^(i d)
// where ρ=|x| and θ=arg(x)
// = ρ^c e^(−d θ) e^(i c θ) ρ^(i d)
// = p^c e^(−d θ) (cos(c θ)
// + i sin(c θ)) (cos(d ln(ρ)) + i sin(d ln(ρ)))
// = p^c e^(−d θ) (
// cos(c θ) cos(d ln(ρ)) − sin(c θ) sin(d ln(ρ))
// + i(cos(c θ) sin(d ln(ρ)) + sin(c θ) cos(d ln(ρ))))
// = p^c e^(−d θ) (cos(c θ + d ln(ρ)) + i sin(c θ + d ln(ρ)))
// = from_polar(p^c e^(−d θ), c θ + d ln(ρ))
let (r, theta) = self.to_polar();
Complex::from_polar(
&(r.powf(exp.re) * (-exp.im * theta).exp()),
&(exp.re * theta + exp.im * r.ln()))
}

/// Raises a floating point number to the complex power `self`.
#[inline]
pub fn expf(&self, base: T) -> Complex<T> {
// formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
// = from_polar(x^a, b ln(x))
Complex::from_polar(&base.powf(self.re), &(self.im * base.ln()))
}

/// Computes the sine of `self`.
#[inline]
Expand Down Expand Up @@ -716,8 +765,12 @@ mod test {
}

fn close(a: Complex64, b: Complex64) -> bool {
close_to_tol(a, b, 1e-10)
}

fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
// returns true if a and b are reasonably close
(a == b) || (a-b).norm() < 1e-10
(a == b) || (a-b).norm() < tol
}

#[test]
Expand Down Expand Up @@ -748,6 +801,49 @@ mod test {
assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI);
}
}

#[test]
fn test_powc()
{
let a = Complex::new(2.0, -3.0);
let b = Complex::new(3.0, 0.0);
assert!(close(a.powc(b), a.powf(b.re)));
assert!(close(b.powc(a), a.expf(b.re)));
let c = Complex::new(1.0 / 3.0, 0.1);
assert!(close_to_tol(a.powc(c), Complex::new(1.65826, -0.33502), 1e-5));
}

#[test]
fn test_powf()
{
let c = Complex::new(2.0, -1.0);
let r = c.powf(3.5);
assert!(close_to_tol(r, Complex::new(-0.8684746, -16.695934), 1e-5));
}

#[test]
fn test_log()
{
let c = Complex::new(2.0, -1.0);
let r = c.log(10.0);
assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
}

#[test]
fn test_some_expf_cases()
{
let c = Complex::new(2.0, -1.0);
let r = c.expf(10.0);
assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));

let c = Complex::new(5.0, -2.0);
let r = c.expf(3.4);
assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));

let c = Complex::new(-1.5, 2.0 / 3.0);
let r = c.expf(1.0 / 3.0);
assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
}

#[test]
fn test_sqrt() {
Expand Down