Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions plot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import dask
from dask import delayed
import dask.dataframe as dd
import dask.array as da
import pandas as pd

def f1(dataframe, col):
x = dataframe.groupby(col)[col].count()
return dict(x)

def f2(dataframe, col):
minv = dataframe[col].min()
maxv = dataframe[col].max()
#print ('min = ', minv, 'maxv = ', maxv)
#print (dataframe[col])
dframe = dd.from_array(dataframe[col]).dropna()
h, b = da.histogram(dframe.values, range=[minv, maxv], bins=10)
return h


def plot(df, unique_threshold):

#df = pd.read_csv('C:/Users/sladdha/Desktop/DataPrep/Datasets/Normal.csv')

ls = list()
for col in df.columns:
ls.append(delayed(df[col].nunique)())

x, = dask.compute(ls)
y, = dask.compute(x)
result = list()

test = []

for i, col in enumerate(df.columns):
if (df[col].count()==0):
continue


if (y[i]/df[col].count()<unique_threshold): #categorial
cnt_series = delayed(f1)(df, col)
#grp_cnt = delayed(dict)(cnt_series)
#print('cat')
result.append(cnt_series)
test.append(col)
elif (df[col].dtype=='float64' or df[col].dtype=='int64') : #numeric
#print('num')
hist = f2(df, col)
result.append(hist)
test.append(col)


computed_res, = dask.compute(result)
column_dict = dict()

for i, res in enumerate(computed_res):
column_dict[test[i]] = res


return (column_dict)
72 changes: 72 additions & 0 deletions tests.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# -*- coding: utf-8 -*-
"""
Created on Tue May 21 15:41:21 2019

@author: sladdha
"""
import datetime
import numpy as np
import pandas as pd
from temp import plot
from temp import f1
from temp import f2

class TestClass(object):

def test_normal(self):
self.data_1 = {

'id': [chr(97 + c) for c in range(1, 10)],

'x': [50, 50, -10, 0, 0, 5, 15, -3, None],

'y': [0.000001, 654.152, None, 15.984512, 3122, -3.1415926535, 111, 15.9, 13.5],

's1': np.ones(9),

'somedate': [datetime.date(2011, 7, 4), datetime.datetime(2022, 1, 1, 13, 57), datetime.datetime(1990, 12, 9), np.nan, datetime.datetime(1990, 12, 9), datetime.datetime(1950, 12, 9), datetime.datetime(1898, 1, 2), datetime.datetime(1950, 12, 9), datetime.datetime(1950, 12, 9)],

'bool_tf': [True, True, False, True, False, True, True, False, True],

'bool_tf_with_nan': [True, False, False, False, False, True, True, False, np.nan],

'bool_01': [1, 1, 0, 1, 1, 0, 0, 0, 1],

'bool_01_with_nan': [1, 0, 1, 0, 0, 1, 1, 0, np.nan],

'mixed': [1, 2, "a", 4, 5, 6, 7, 8, 9]

}

self.df_1 = pd.DataFrame(self.data_1)
#threshold = 0.4
self.df_1_expected = {'bool_01': {0: 4, 1: 5}, 'bool_01_with_nan': {0.0: 4, 1.0: 4}, 'bool_tf': {False: 3, True: 6}, 'bool_tf_with_nan': {False: 5, True: 3}, 's1': {1.0: 9}, 'x': np.array([1, 3, 1, 0, 1, 0, 0, 0, 0, 2], dtype=np.int64), 'y': np.array([6, 0, 1, 0, 0, 0, 0, 0, 0, 1], dtype=np.int64)}
res = plot(self.df_1, 0.4)
assert res['bool_01'] == self.df_1_expected['bool_01']
assert res['bool_01_with_nan'] == self.df_1_expected['bool_01_with_nan']
assert res['bool_tf'] == self.df_1_expected['bool_tf']
assert res['bool_tf_with_nan'] == self.df_1_expected['bool_tf_with_nan']
assert res['s1'] == self.df_1_expected['s1']
assert np.all(res['x'] == self.df_1_expected['x'])
assert np.all(res['y'] == self.df_1_expected['y'])


def test_corner(self):

self.df_2 = pd.DataFrame({'all_nan':[np.nan for _ in range(10)], 'all_one':np.ones(10), 'all_zeros':np.zeros(10), 'random':np.array([ 0.38538395, 0.13609054, 0.15973238, 0.96192966, 0.03708882,
0.03633855, 0.25260128, 0.72139843, 0.74553949, 0.41102021])})

#threshold = 0.5
self.df_1_expected = {'all_one': {1.0: 10},
'all_zeros': {0.0: 10},
'random': np.array([2, 2, 1, 1, 1, 0, 0, 2, 0, 1], dtype=np.int64)}

res = plot(self.df_2, 0.5)

#assert np.all(res['all_nan'] == self.df_1_expected['all_nan'])
assert res['all_one'] == self.df_1_expected['all_one']
assert res['all_zeros'] == self.df_1_expected['all_zeros']