Skip to content
/ SimpleBase Public

.NET library for encoding/decoding Base16, Base32, Base58 and Base85.

License

Notifications You must be signed in to change notification settings

ssg/SimpleBase

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SimpleBase

NuGet Version Build Status

This is my own take for exotic base encodings like Base32, Base58 and Base85. I started to write it in 2013 as coding practice and kept it as a small pet project. I suggest anyone who wants to brush up their coding skills to give those encoding problems a shot. They turned out to be more challenging than I expected. To grasp the algorithms I had to get a pen and paper to see how the math worked.

Features

  • Base32: RFC 4648, BECH32, Crockford, z-base-32, Geohash, FileCoin and Extended Hex (BASE32-HEX) flavors with Crockford character substitution, or any other custom flavors.
  • Base58: Both the standard encoding (Bitcoin (BTC), Ripple (XRP), Flickr, and custom alphabets) and Monero (XMR) Base58 algorithms are supported. Also provides Base58Check and Avalanche CB58 encoding helpers.
  • Base85: Ascii85, Z85 and custom flavors. IPv6 encoding/decoding support.
  • Base16: UpperCase, LowerCase and ModHex flavors. An experimental hexadecimal encoder/decoder just to see how far I can take the optimizations compared to .NET's implementations. It's quite fast now. It could also be used as a replacement for SoapHexBinary.Parse although .NET has Convert.FromHexString() method since .NET 5.
  • Multibase support. All formats covered by SimpleBase including a few Base64 variants are supported.
  • One-shot memory buffer based APIs for simple use cases.
  • Stream-based async APIs for more advanced scenarios.
  • Lightweight: No dependencies.
  • Support for big-endian CPUs like IBM s390x (zArchitecture).
  • Thread-safe.
  • Simple to use.

NuGet

To install it from NuGet:

Install-Package SimpleBase

Usage

Base32

Encode a byte array:

using SimpleBase;

byte[] myBuffer;
string result = Base32.Crockford.Encode(myBuffer, padding: true);
// you can also use "ExtendedHex" or "Rfc4648" as encoder flavors

Decode a Base32-encoded string:

using SimpleBase;

string myText = ...
byte[] result = Base32.Crockford.Decode(myText);

Base58

Encode a byte array:

byte[] myBuffer = ...
string result = Base58.Bitcoin.Encode(myBuffer);
// you can also use "Ripple" or "Flickr" as encoder flavors

Decode a Base58-encoded string:

string myText = ...
byte[] result = Base58.Bitcoin.Decode(myText);

Encode a Base58Check address:

byte[] address = ...
byte version = 1; // P2PKH address
string result = Base58.Bitcoin.EncodeCheck(address, version);

Decode a Base58Check address:

string address = ...
Span<byte> buffer = new byte[maxAddressLength];
if (Base58.Bitcoin.TryDecodeCheck(address, buffer, out byte version, out int numBytesWritten));
buffer = buffer[..numBytesWritten]; // use only the written portion of the buffer

Avalanche CB58 usage is pretty much the same except it doesn't have a separate version field. Just use EncodeCb58 and TryDecodeCb58 methods instead. For encoding:

byte[] address = ...
byte version = 1;
string result = Base58.Bitcoin.EncodeCb58(address);

For decoding:

string address = ...
Span<byte> buffer = new byte[maxAddressLength];
if (Base58.Bitcoin.TryDecodeCb58(address, buffer, out int numBytesWritten));
buffer = buffer[..numBytesWritten]; // use only the written portion of the buffer

Base85

Encode a byte array to Ascii85 string:

byte[] myBuffer = ...
string result = Base85.Ascii85.Encode(myBuffer);
// you can also use Z85 as a flavor

Decode an encoded Ascii85 string:

string encodedString = ...
byte[] result = Base85.Ascii85.Decode(encodedString);

Both "zero" and "space" shortcuts are supported for Ascii85. Z85 is still vanilla.

Base16

Encode a byte array to hex string:

byte[] myBuffer = ...
string result = Base16.EncodeUpper(myBuffer); // encode to uppercase
// or 
string result = Base16.EncodeLower(myBuffer); // encode to lowercase

To decode a valid hex string:

string text = ...
byte[] result = Base16.Decode(text); // decodes both upper and lowercase

Stream Mode

Most encoding classes also support a stream mode that can work on streams, be it a network connection, a file or whatever you want. They are ideal for handling arbitrarily large data as they don't consume memory other than a small buffer when encoding or decoding. Their syntaxes are mostly identical. Text encoding decoding is done through a TextReader/TextWriter and the rest is read through a Stream interface. Here is a simple code that encodes a file to another file using Base85 encoding:

using (var input = File.Open("somefile.bin"))
using (var output = File.Create("somefile.ascii85"))
using (var writer = new TextWriter(output)) // you can specify encoding here
{
  Base85.Ascii85.Encode(input, writer);
}

Decode works similarly. Here is a Base32 file decoder:

using (var input = File.Open("somefile.b32"))
using (var output = File.Create("somefile.bin"))
using (var reader = new TextReader(input)) // specify encoding here
{
	Base32.Crockford.Decode(reader, output);
}

Asynchronous Stream Mode

You can also encode/decode streams in asynchronous fashion:

using (var input = File.Open("somefile.bin"))
using (var output = File.Create("somefile.ascii85"))
using (var writer = new TextWriter(output)) // you can specify encoding here
{
  await Base85.Ascii85.EncodeAsync(input, writer);
}

And the decode:

using (var input = File.Open("somefile.b32"))
using (var output = File.Create("somefile.bin"))
using (var reader = new TextReader(input)) // specify encoding here
{
	await Base32.Crockford.DecodeAsync(reader, output);
}

TryEncode/TryDecode

If you want to use an existing pre-allocated buffer to encode or decode without causing a GC allocation every time, you can make use of TryEncode/TryDecode methods which receive input, output buffers as parameters.

Encoding is like this:

byte[] input = [1, 2, 3, 4, 5];
int outputBufferSize = Base58.Bitcoin.GetSafeCharCountForEncoding(input);
var output = new char[outputBufferSize];

if (Base58.Bitcoin.TryEncode(input, output, out int numCharsWritten))
{
   // there you go
}

and decoding:

string input = "... some bitcoin address ...";
int outputBufferSize = Base58.Bitcoin.GetSafeByteCountForDecoding(output);
var output = new byte[outputBufferSize];

if (Base58.Bitcoin.TryDecode(input, output, out int numBytesWritten))
{
    // et voila!
}

Multibase encoding/decoding

In order to encode a Multibase string just specify the encoding you want to use:

byte[] input = [1, 2, 3, 4, 5];
string result = Multibase.Encode(input, MultibaseEncoding.Base32);

When decoding a multibase string, the encoding is automatically detected:

string input = "... some encoded multibase string ...";
byte[] result = Multibase.Decode(input);

If you don't want decoding to raise an exception, use TryDecode() method instead:

string input = "... some encoded multibase string ...";
byte[] output = new byte[outputBufferSize]; // enough the fit the decoded buffer
if (Multibase.TryDecode(input, output, out int numBytesWritten))
{
    // et voila!
}

Benchmark Results

Small buffer sizes are used (64 characters). They are closer to real life applications. Base58 performs really bad in decoding of larger buffer sizes, due to polynomial complexity of numeric base conversions.

BenchmarkDotNet v0.14.0, Windows 11 (10.0.26100.3915) AMD Ryzen 9 5950X, 1 CPU, 32 logical and 16 physical cores .NET SDK 8.0.408 [Host] : .NET 8.0.15 (8.0.1525.16413), X64 RyuJIT AVX2 DefaultJob : .NET 8.0.15 (8.0.1525.16413), X64 RyuJIT AVX2

Encoding (64 byte buffer)

Method Mean Error StdDev Gen0 Allocated
DotNet_Base64 35.09 ns 0.756 ns 0.870 ns 0.0119 200 B
SimpleBase_Base16_UpperCase 84.53 ns 1.608 ns 1.504 ns 0.0167 280 B
SimpleBase_Base32_CrockfordWithPadding 150.97 ns 2.071 ns 1.730 ns 0.0138 232 B
SimpleBase_Base85_Z85 149.03 ns 0.835 ns 0.741 ns 0.0110 184 B
SimpleBase_Base58_Bitcoin 44.61 ns 0.449 ns 0.350 ns 0.0091 152 B
SimpleBase_Base58_Monero 206.80 ns 3.761 ns 3.518 ns 0.0119 200 B
SimpleBase_Multibase_Base16_UpperCase 104.93 ns 2.153 ns 4.096 ns 0.0334 560 B

Decoding (80 character string)

Method Mean Error StdDev Gen0 Gen1 Allocated
DotNet_Base64 104.13 ns 1.826 ns 1.708 ns 0.0052 - 88 B
SimpleBase_Base16_UpperCase 51.17 ns 0.919 ns 0.815 ns 0.0038 - 64 B
SimpleBase_Base16_UpperCase_TextReader 294.32 ns 8.969 ns 25.445 ns 0.5007 0.0153 8376 B
SimpleBase_Base32_Crockford 142.50 ns 1.277 ns 1.132 ns 0.0048 - 80 B
SimpleBase_Base85_Z85 250.56 ns 2.123 ns 1.985 ns 0.0052 - 88 B
SimpleBase_Base58_Bitcoin 3,652.25 ns 13.163 ns 11.669 ns 0.0038 - 88 B
SimpleBase_Base58_Monero 128.16 ns 1.155 ns 0.965 ns 0.0052 - 88 B
SimpleBase_Multibase_Base16_UpperCase 51.27 ns 0.891 ns 0.834 ns 0.0038 - 64 B
SimpleBase_Multibase_TryDecode_Base16_UpperCase 49.32 ns 0.377 ns 0.334 ns - - -

Notes

I'm sure there are areas for improvement. I didn't want to go further in optimizations which would hurt readability and extensibility. I might experiment on them in the future.

Test suite for Base32 isn't complete, I took most of it from RFC4648. Base58 really lacks a good spec or test vectors needed. I had to resort to using online converters to generate preliminary test vectors.

Base85 tests are also makseshift tests based on what output Cryptii produces. Contribution to missing test cases are greatly appreciated.

It's interesting that I wasn't able to reach .NET Base64's performance with Base16 with a straightforward managed code despite that it's much simpler. I was only able to match it after I converted Base16 to unsafe code with good independent interleaving so CPU pipeline optimizations could take place. Still not satisfied though. Is .NET's Base64 implementation native? Perhaps.

Thanks

Thanks to all contributors (most up to date is on the GitHub sidebar) who provided patches, and reported bugs.

Chatting about this pet project with my friends @detaybey, @vhallac, @alkimake and @Utopians at one of our friend's birthday encouraged me to finish this. Thanks guys.

About

.NET library for encoding/decoding Base16, Base32, Base58 and Base85.

Topics

Resources

License

Security policy

Stars

Watchers

Forks

Sponsor this project

 

Packages

 
 
 

Languages