The Universal Translation Layer for Large Language Model APIs
LLM Bridge is a powerful TypeScript library that provides seamless translation between different LLM provider APIs (OpenAI, Anthropic Claude, Google Gemini) while preserving zero data loss and enabling perfect reconstruction of original requests.
When building Infinite Chat API, we needed a way to create a proxy that supports multiple LLM providers. However, this is a difficult challenge, as I wrote in this blog post: The API layer for using intelligence is completely broken..
The particular challenges are in:
- Manipulating and creating proxies for different LLM providers
- Multi-modality
- Tool call chains
- Error handling
LLM Bridge provides a universal format that acts as a common language between all major LLM providers, enabling:
β
Perfect Translation - Convert between OpenAI, Anthropic, and Google formats
β
Zero Data Loss - Every field is preserved with _original
reconstruction
β
Multimodal Support - Images, documents, and rich content across providers
β
Tool Calling - Function calling translation between different formats
β
Error Handling - Unified error types with provider-specific translation
β
Type Safety - Full TypeScript support with strict typing
npm install llm-bridge
# or
yarn add llm-bridge
# or
pnpm add llm-bridge
import { toUniversal, fromUniversal, translateBetweenProviders } from 'llm-bridge'
// Convert OpenAI request to universal format
const openaiRequest = {
model: "gpt-4",
messages: [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: "Hello!" }
],
temperature: 0.7,
max_tokens: 1000
}
const universal = toUniversal("openai", openaiRequest)
console.log(universal.provider) // "openai"
console.log(universal.model) // "gpt-4"
console.log(universal.system) // "You are a helpful assistant"
// Convert universal format back to any provider
const anthropicRequest = fromUniversal("anthropic", universal)
const googleRequest = fromUniversal("google", universal)
// Or translate directly between providers
const anthropicRequest2 = translateBetweenProviders("openai", "anthropic", openaiRequest)
// Round-trip conversion with zero data loss
const original = { /* your OpenAI request */ }
const universal = toUniversal("openai", original)
const reconstructed = fromUniversal("openai", universal)
console.log(reconstructed === original) // Perfect equality!
LLM Bridge converts between provider-specific formats through a universal intermediate format:
OpenAI ββ Universal ββ Anthropic
β β
Google ββ Universal ββ Custom
Handle images and documents seamlessly across providers:
// OpenAI format with base64 image
const openaiMultimodal = {
model: "gpt-4-vision-preview",
messages: [{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: {
url: "...",
detail: "high"
}
}
]
}]
}
// Translate to Anthropic format
const anthropicMultimodal = translateBetweenProviders("openai", "anthropic", openaiMultimodal)
// Result: Anthropic-compatible format
// {
// model: "gpt-4-vision-preview",
// messages: [{
// role: "user",
// content: [
// { type: "text", text: "What's in this image?" },
// {
// type: "image",
// source: {
// type: "base64",
// media_type: "image/jpeg",
// data: "iVBORw0KGgoAAAA..."
// }
// }
// ]
// }]
// }
Seamlessly translate tool calls between different provider formats:
// OpenAI tool calling format
const openaiWithTools = {
model: "gpt-4",
messages: [
{
role: "assistant",
tool_calls: [{
id: "call_123",
type: "function",
function: {
name: "get_weather",
arguments: '{"location": "San Francisco"}'
}
}]
},
{
role: "tool",
content: '{"temperature": 72, "condition": "sunny"}',
tool_call_id: "call_123"
}
],
tools: [{
type: "function",
function: {
name: "get_weather",
description: "Get weather information",
parameters: {
type: "object",
properties: {
location: { type: "string" }
}
}
}
}]
}
// Translate to Google Gemini format
const geminiWithTools = translateBetweenProviders("openai", "google", openaiWithTools)
// Result: Google-compatible tool calling format
// {
// contents: [
// {
// role: "model",
// parts: [{
// functionCall: {
// name: "get_weather",
// args: { location: "San Francisco" }
// }
// }]
// },
// {
// role: "user",
// parts: [{
// functionResponse: {
// name: "get_weather",
// response: { temperature: 72, condition: "sunny" }
// }
// }]
// }
// ],
// tools: [...]
// }
Unified error handling with provider-specific error translation:
import { buildUniversalError, translateError } from 'llm-bridge'
// Create a universal error
const error = buildUniversalError(
"rate_limit_error",
"Rate limit exceeded",
"openai",
{ retryAfter: 60 }
)
// Translate to different provider formats
const anthropicError = translateError(error.universal, "anthropic")
const googleError = translateError(error.universal, "google")
// Each provider gets the appropriate error format:
// OpenAI: { error: { type: "insufficient_quota", message: "Rate limit exceeded" } }
// Anthropic: { type: "error", error: { type: "rate_limit_error", message: "Rate limit exceeded" } }
// Google: { error: { code: 429, status: "RESOURCE_EXHAUSTED", message: "Rate limit exceeded" } }
Automatically detect which provider format you're working with:
import { detectProvider } from 'llm-bridge'
const provider1 = detectProvider({ model: "gpt-4", messages: [...] }) // "openai"
const provider2 = detectProvider({ model: "claude-3-opus", max_tokens: 100 }) // "anthropic"
const provider3 = detectProvider({ contents: [...] }) // "google"
import { toUniversal, fromUniversal } from 'llm-bridge'
// Create a universal middleware
async function universalLLMMiddleware(request: any, targetProvider: string) {
// Convert any provider format to universal
const sourceProvider = detectProvider(request)
const universal = toUniversal(sourceProvider, request)
// Apply universal transformations
universal.temperature = Math.min(universal.temperature || 0, 1)
universal.max_tokens = Math.min(universal.max_tokens || 1000, 4000)
// Convert to target provider
const targetRequest = fromUniversal(targetProvider, universal)
// Make the API call
const response = await callProvider(targetProvider, targetRequest)
return response
}
// Use with any provider
const result1 = await universalLLMMiddleware(openaiRequest, "anthropic")
const result2 = await universalLLMMiddleware(anthropicRequest, "google")
async function robustLLMCall(request: any) {
const providers = ["openai", "anthropic", "google"]
for (const provider of providers) {
try {
const universal = toUniversal(detectProvider(request), request)
const providerRequest = fromUniversal(provider, universal)
return await callProvider(provider, providerRequest)
} catch (error) {
console.log(`${provider} failed, trying next provider...`)
continue
}
}
throw new Error("All providers failed")
}
import { getModelCosts, countUniversalTokens } from 'llm-bridge'
function optimizeModelChoice(request: any) {
const universal = toUniversal(detectProvider(request), request)
const tokens = countUniversalTokens(universal)
const models = [
{ provider: "openai", model: "gpt-4o-mini" },
{ provider: "anthropic", model: "claude-3-haiku" },
{ provider: "google", model: "gemini-1.5-flash" }
]
// Calculate cost for each model
const costs = models.map(({ provider, model }) => {
const modelCosts = getModelCosts(model)
const inputCost = (tokens.inputTokens / 1000) * modelCosts.inputCostPer1K
const outputCost = (tokens.outputTokens / 1000) * modelCosts.outputCostPer1K
return { provider, model, totalCost: inputCost + outputCost }
})
// Return cheapest option
return costs.sort((a, b) => a.totalCost - b.totalCost)[0]
}
toUniversal(provider, body)
- Convert provider format to universalfromUniversal(provider, universal)
- Convert universal to provider formattranslateBetweenProviders(from, to, body)
- Direct provider-to-provider translationdetectProvider(body)
- Auto-detect provider from request format
getModelDetails(model)
- Get model information and capabilitiesgetModelCosts(model)
- Get pricing information for modelcountUniversalTokens(universal)
- Estimate token usagecreateObservabilityData(universal)
- Generate telemetry data
buildUniversalError(type, message, provider, options)
- Create universal errortranslateError(error, targetProvider)
- Translate error between providersparseProviderError(error, provider)
- Parse provider-specific errors
import { translateBetweenProviders, detectProvider } from 'llm-bridge'
class UniversalChatBot {
async chat(message: string, preferredProvider = "openai") {
const request = {
model: this.getModelForProvider(preferredProvider),
messages: [
{ role: "system", content: "You are a helpful assistant" },
{ role: "user", content: message }
],
temperature: 0.7
}
try {
// Try preferred provider first
return await this.callProvider(preferredProvider, request)
} catch (error) {
// Fallback to other providers
const fallbacks = ["anthropic", "google", "openai"]
.filter(p => p !== preferredProvider)
for (const provider of fallbacks) {
try {
const translated = translateBetweenProviders(
preferredProvider,
provider,
request
)
return await this.callProvider(provider, translated)
} catch (fallbackError) {
continue
}
}
throw new Error("All providers failed")
}
}
private getModelForProvider(provider: string) {
const models = {
openai: "gpt-4",
anthropic: "claude-3-opus-20240229",
google: "gemini-1.5-pro"
}
return models[provider] || "gpt-4"
}
}
async function analyzeImage(imageUrl: string, provider: string) {
// Create OpenAI-style request
const request = {
model: "gpt-4-vision-preview",
messages: [{
role: "user",
content: [
{ type: "text", text: "Analyze this image in detail" },
{ type: "image_url", image_url: { url: imageUrl } }
]
}]
}
// Translate to target provider
const translated = translateBetweenProviders("openai", provider, request)
// Call the provider
return await callProvider(provider, translated)
}
// Works with any provider
const openaiResult = await analyzeImage(imageUrl, "openai")
const claudeResult = await analyzeImage(imageUrl, "anthropic")
const geminiResult = await analyzeImage(imageUrl, "google")
Run the comprehensive test suite:
npm test
Our test suite includes:
- β 146 passing tests
- β Provider format conversion
- β Universal format translation
- β Multimodal content handling
- β Tool calling translation
- β Error handling and translation
- β Edge cases and malformed input
- β Type safety verification
MIT License - see LICENSE file for details.
- π Documentation
- π Report Issues
- π¬ Discussions
Made with β€οΈ by team supermemory