Skip to content

supermemoryai/llm-bridge

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸŒ‰ LLM Bridge

The Universal Translation Layer for Large Language Model APIs

LLM Bridge is a powerful TypeScript library that provides seamless translation between different LLM provider APIs (OpenAI, Anthropic Claude, Google Gemini) while preserving zero data loss and enabling perfect reconstruction of original requests.

Tests Coverage

πŸš€ Why LLM Bridge Exists

The Problem

When building Infinite Chat API, we needed a way to create a proxy that supports multiple LLM providers. However, this is a difficult challenge, as I wrote in this blog post: The API layer for using intelligence is completely broken..

The particular challenges are in:

  • Manipulating and creating proxies for different LLM providers
  • Multi-modality
  • Tool call chains
  • Error handling

The Solution

LLM Bridge provides a universal format that acts as a common language between all major LLM providers, enabling:

βœ… Perfect Translation - Convert between OpenAI, Anthropic, and Google formats
βœ… Zero Data Loss - Every field is preserved with _original reconstruction
βœ… Multimodal Support - Images, documents, and rich content across providers
βœ… Tool Calling - Function calling translation between different formats
βœ… Error Handling - Unified error types with provider-specific translation
βœ… Type Safety - Full TypeScript support with strict typing

πŸ“¦ Installation

npm install llm-bridge
# or
yarn add llm-bridge
# or
pnpm add llm-bridge

πŸ”§ Quick Start

Basic Usage

import { toUniversal, fromUniversal, translateBetweenProviders } from 'llm-bridge'

// Convert OpenAI request to universal format
const openaiRequest = {
  model: "gpt-4",
  messages: [
    { role: "system", content: "You are a helpful assistant" },
    { role: "user", content: "Hello!" }
  ],
  temperature: 0.7,
  max_tokens: 1000
}

const universal = toUniversal("openai", openaiRequest)
console.log(universal.provider) // "openai"
console.log(universal.model)    // "gpt-4"
console.log(universal.system)   // "You are a helpful assistant"

// Convert universal format back to any provider
const anthropicRequest = fromUniversal("anthropic", universal)
const googleRequest = fromUniversal("google", universal)

// Or translate directly between providers
const anthropicRequest2 = translateBetweenProviders("openai", "anthropic", openaiRequest)

Perfect Reconstruction

// Round-trip conversion with zero data loss
const original = { /* your OpenAI request */ }
const universal = toUniversal("openai", original)
const reconstructed = fromUniversal("openai", universal)

console.log(reconstructed === original) // Perfect equality!

🎯 Core Features

1. Universal Format Translation

LLM Bridge converts between provider-specific formats through a universal intermediate format:

OpenAI ←→ Universal ←→ Anthropic
  ↕                    ↕
Google ←→ Universal ←→ Custom

2. Multimodal Content Support

Handle images and documents seamlessly across providers:

// OpenAI format with base64 image
const openaiMultimodal = {
  model: "gpt-4-vision-preview",
  messages: [{
    role: "user",
    content: [
      { type: "text", text: "What's in this image?" },
      { 
        type: "image_url", 
        image_url: { 
          url: "...",
          detail: "high"
        }
      }
    ]
  }]
}

// Translate to Anthropic format
const anthropicMultimodal = translateBetweenProviders("openai", "anthropic", openaiMultimodal)

// Result: Anthropic-compatible format
// {
//   model: "gpt-4-vision-preview",
//   messages: [{
//     role: "user", 
//     content: [
//       { type: "text", text: "What's in this image?" },
//       { 
//         type: "image",
//         source: {
//           type: "base64",
//           media_type: "image/jpeg", 
//           data: "iVBORw0KGgoAAAA..."
//         }
//       }
//     ]
//   }]
// }

3. Function/Tool Calling Translation

Seamlessly translate tool calls between different provider formats:

// OpenAI tool calling format
const openaiWithTools = {
  model: "gpt-4",
  messages: [
    {
      role: "assistant",
      tool_calls: [{
        id: "call_123",
        type: "function", 
        function: {
          name: "get_weather",
          arguments: '{"location": "San Francisco"}'
        }
      }]
    },
    {
      role: "tool",
      content: '{"temperature": 72, "condition": "sunny"}',
      tool_call_id: "call_123"
    }
  ],
  tools: [{
    type: "function",
    function: {
      name: "get_weather",
      description: "Get weather information",
      parameters: {
        type: "object",
        properties: {
          location: { type: "string" }
        }
      }
    }
  }]
}

// Translate to Google Gemini format
const geminiWithTools = translateBetweenProviders("openai", "google", openaiWithTools)

// Result: Google-compatible tool calling format
// {
//   contents: [
//     {
//       role: "model",
//       parts: [{
//         functionCall: {
//           name: "get_weather", 
//           args: { location: "San Francisco" }
//         }
//       }]
//     },
//     {
//       role: "user",
//       parts: [{
//         functionResponse: {
//           name: "get_weather",
//           response: { temperature: 72, condition: "sunny" }
//         }
//       }]
//     }
//   ],
//   tools: [...]
// }

4. Error Handling & Translation

Unified error handling with provider-specific error translation:

import { buildUniversalError, translateError } from 'llm-bridge'

// Create a universal error
const error = buildUniversalError(
  "rate_limit_error", 
  "Rate limit exceeded",
  "openai",
  { retryAfter: 60 }
)

// Translate to different provider formats
const anthropicError = translateError(error.universal, "anthropic")
const googleError = translateError(error.universal, "google")

// Each provider gets the appropriate error format:
// OpenAI: { error: { type: "insufficient_quota", message: "Rate limit exceeded" } }
// Anthropic: { type: "error", error: { type: "rate_limit_error", message: "Rate limit exceeded" } }  
// Google: { error: { code: 429, status: "RESOURCE_EXHAUSTED", message: "Rate limit exceeded" } }

5. Provider Detection

Automatically detect which provider format you're working with:

import { detectProvider } from 'llm-bridge'

const provider1 = detectProvider({ model: "gpt-4", messages: [...] })        // "openai"
const provider2 = detectProvider({ model: "claude-3-opus", max_tokens: 100 }) // "anthropic"  
const provider3 = detectProvider({ contents: [...] })                        // "google"

πŸ—οΈ Advanced Usage

Middleware Pattern

import { toUniversal, fromUniversal } from 'llm-bridge'

// Create a universal middleware
async function universalLLMMiddleware(request: any, targetProvider: string) {
  // Convert any provider format to universal
  const sourceProvider = detectProvider(request)
  const universal = toUniversal(sourceProvider, request)
  
  // Apply universal transformations
  universal.temperature = Math.min(universal.temperature || 0, 1)
  universal.max_tokens = Math.min(universal.max_tokens || 1000, 4000)
  
  // Convert to target provider
  const targetRequest = fromUniversal(targetProvider, universal)
  
  // Make the API call
  const response = await callProvider(targetProvider, targetRequest)
  
  return response
}

// Use with any provider
const result1 = await universalLLMMiddleware(openaiRequest, "anthropic")
const result2 = await universalLLMMiddleware(anthropicRequest, "google")

Load Balancing & Fallbacks

async function robustLLMCall(request: any) {
  const providers = ["openai", "anthropic", "google"]
  
  for (const provider of providers) {
    try {
      const universal = toUniversal(detectProvider(request), request)
      const providerRequest = fromUniversal(provider, universal)
      
      return await callProvider(provider, providerRequest)
    } catch (error) {
      console.log(`${provider} failed, trying next provider...`)
      continue
    }
  }
  
  throw new Error("All providers failed")
}

Cost Optimization

import { getModelCosts, countUniversalTokens } from 'llm-bridge'

function optimizeModelChoice(request: any) {
  const universal = toUniversal(detectProvider(request), request)
  const tokens = countUniversalTokens(universal)
  
  const models = [
    { provider: "openai", model: "gpt-4o-mini" },
    { provider: "anthropic", model: "claude-3-haiku" },
    { provider: "google", model: "gemini-1.5-flash" }
  ]
  
  // Calculate cost for each model
  const costs = models.map(({ provider, model }) => {
    const modelCosts = getModelCosts(model)
    const inputCost = (tokens.inputTokens / 1000) * modelCosts.inputCostPer1K
    const outputCost = (tokens.outputTokens / 1000) * modelCosts.outputCostPer1K
    
    return { provider, model, totalCost: inputCost + outputCost }
  })
  
  // Return cheapest option
  return costs.sort((a, b) => a.totalCost - b.totalCost)[0]
}

πŸ”Œ API Reference

Core Functions

  • toUniversal(provider, body) - Convert provider format to universal
  • fromUniversal(provider, universal) - Convert universal to provider format
  • translateBetweenProviders(from, to, body) - Direct provider-to-provider translation
  • detectProvider(body) - Auto-detect provider from request format

Utility Functions

  • getModelDetails(model) - Get model information and capabilities
  • getModelCosts(model) - Get pricing information for model
  • countUniversalTokens(universal) - Estimate token usage
  • createObservabilityData(universal) - Generate telemetry data

Error Handling

  • buildUniversalError(type, message, provider, options) - Create universal error
  • translateError(error, targetProvider) - Translate error between providers
  • parseProviderError(error, provider) - Parse provider-specific errors

🎨 Examples

Multi-Provider Chat Application

import { translateBetweenProviders, detectProvider } from 'llm-bridge'

class UniversalChatBot {
  async chat(message: string, preferredProvider = "openai") {
    const request = {
      model: this.getModelForProvider(preferredProvider),
      messages: [
        { role: "system", content: "You are a helpful assistant" },
        { role: "user", content: message }
      ],
      temperature: 0.7
    }
    
    try {
      // Try preferred provider first
      return await this.callProvider(preferredProvider, request)
    } catch (error) {
      // Fallback to other providers
      const fallbacks = ["anthropic", "google", "openai"]
        .filter(p => p !== preferredProvider)
      
      for (const provider of fallbacks) {
        try {
          const translated = translateBetweenProviders(
            preferredProvider, 
            provider, 
            request
          )
          return await this.callProvider(provider, translated)
        } catch (fallbackError) {
          continue
        }
      }
      
      throw new Error("All providers failed")
    }
  }
  
  private getModelForProvider(provider: string) {
    const models = {
      openai: "gpt-4",
      anthropic: "claude-3-opus-20240229", 
      google: "gemini-1.5-pro"
    }
    return models[provider] || "gpt-4"
  }
}

Image Analysis Across Providers

async function analyzeImage(imageUrl: string, provider: string) {
  // Create OpenAI-style request
  const request = {
    model: "gpt-4-vision-preview", 
    messages: [{
      role: "user",
      content: [
        { type: "text", text: "Analyze this image in detail" },
        { type: "image_url", image_url: { url: imageUrl } }
      ]
    }]
  }
  
  // Translate to target provider
  const translated = translateBetweenProviders("openai", provider, request)
  
  // Call the provider
  return await callProvider(provider, translated)
}

// Works with any provider
const openaiResult = await analyzeImage(imageUrl, "openai")
const claudeResult = await analyzeImage(imageUrl, "anthropic") 
const geminiResult = await analyzeImage(imageUrl, "google")

πŸ§ͺ Testing

Run the comprehensive test suite:

npm test

Our test suite includes:

  • βœ… 146 passing tests
  • βœ… Provider format conversion
  • βœ… Universal format translation
  • βœ… Multimodal content handling
  • βœ… Tool calling translation
  • βœ… Error handling and translation
  • βœ… Edge cases and malformed input
  • βœ… Type safety verification

πŸ“„ License

MIT License - see LICENSE file for details.

πŸ™‹β€β™‚οΈ Support


Made with ❀️ by team supermemory

About

Interoperability between input formats of various LLMs, with observability, error handling, etc. built in.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published