|
21 | 21 | import tensorflow as tf
|
22 | 22 |
|
23 | 23 | from tensorflow_addons.layers.polynomial import PolynomialCrossing
|
24 |
| -from tensorflow_addons.utils import test_utils |
25 |
| - |
26 |
| - |
27 |
| -@test_utils.run_all_in_graph_and_eager_modes |
28 |
| -class PolynomialCrossingTest(tf.test.TestCase): |
29 |
| - # Do not use layer_test due to multiple inputs. |
30 |
| - |
31 |
| - def test_full_matrix(self): |
32 |
| - x0 = np.asarray([[0.1, 0.2, 0.3]]).astype(np.float32) |
33 |
| - x = np.asarray([[0.4, 0.5, 0.6]]).astype(np.float32) |
34 |
| - layer = PolynomialCrossing(projection_dim=None, kernel_initializer="ones") |
35 |
| - output = layer([x0, x]) |
36 |
| - self.evaluate(tf.compat.v1.global_variables_initializer()) |
37 |
| - self.assertAllClose(np.asarray([[0.55, 0.8, 1.05]]), output) |
38 |
| - |
39 |
| - def test_invalid_proj_dim(self): |
40 |
| - with self.assertRaisesRegexp(ValueError, r"is not supported yet"): |
41 |
| - x0 = np.random.random((12, 5)) |
42 |
| - x = np.random.random((12, 5)) |
43 |
| - layer = PolynomialCrossing(projection_dim=6) |
44 |
| - layer([x0, x]) |
45 |
| - |
46 |
| - def test_invalid_inputs(self): |
47 |
| - with self.assertRaisesRegexp(ValueError, r"must be a tuple or list of size 2"): |
48 |
| - x0 = np.random.random((12, 5)) |
49 |
| - x = np.random.random((12, 5)) |
50 |
| - x1 = np.random.random((12, 5)) |
51 |
| - layer = PolynomialCrossing(projection_dim=6) |
52 |
| - layer([x0, x, x1]) |
53 |
| - |
54 |
| - def test_serialization(self): |
55 |
| - layer = PolynomialCrossing(projection_dim=None) |
56 |
| - serialized_layer = tf.keras.layers.serialize(layer) |
57 |
| - new_layer = tf.keras.layers.deserialize(serialized_layer) |
58 |
| - self.assertEqual(layer.get_config(), new_layer.get_config()) |
| 24 | + |
| 25 | + |
| 26 | +@pytest.mark.usefixtures("maybe_run_functions_eagerly") |
| 27 | +def test_full_matrix(): |
| 28 | + x0 = np.asarray([[0.1, 0.2, 0.3]]).astype(np.float32) |
| 29 | + x = np.asarray([[0.4, 0.5, 0.6]]).astype(np.float32) |
| 30 | + layer = PolynomialCrossing(projection_dim=None, kernel_initializer="ones") |
| 31 | + output = layer([x0, x]) |
| 32 | + np.testing.assert_allclose([[0.55, 0.8, 1.05]], output) |
| 33 | + |
| 34 | + |
| 35 | +@pytest.mark.usefixtures("maybe_run_functions_eagerly") |
| 36 | +def test_invalid_proj_dim(): |
| 37 | + with pytest.raises(ValueError) as exception_info: |
| 38 | + x0 = np.random.random((12, 5)) |
| 39 | + x = np.random.random((12, 5)) |
| 40 | + layer = PolynomialCrossing(projection_dim=6) |
| 41 | + layer([x0, x]) |
| 42 | + assert "is not supported yet" in str(exception_info.value) |
| 43 | + |
| 44 | + |
| 45 | +@pytest.mark.usefixtures("maybe_run_functions_eagerly") |
| 46 | +def test_invalid_inputs(): |
| 47 | + with pytest.raises(ValueError) as exception_info: |
| 48 | + x0 = np.random.random((12, 5)) |
| 49 | + x = np.random.random((12, 5)) |
| 50 | + x1 = np.random.random((12, 5)) |
| 51 | + layer = PolynomialCrossing(projection_dim=6) |
| 52 | + layer([x0, x, x1]) |
| 53 | + assert "must be a tuple or list of size 2" in str(exception_info.value) |
| 54 | + |
| 55 | + |
| 56 | +def test_serialization(): |
| 57 | + layer = PolynomialCrossing(projection_dim=None) |
| 58 | + serialized_layer = tf.keras.layers.serialize(layer) |
| 59 | + new_layer = tf.keras.layers.deserialize(serialized_layer) |
| 60 | + assert layer.get_config() == new_layer.get_config() |
59 | 61 |
|
60 | 62 |
|
61 | 63 | if __name__ == "__main__":
|
|
0 commit comments