-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Description
Consider Stack Overflow for getting support using TensorBoard—they have
a larger community with better searchability:
https://stackoverflow.com/questions/tagged/tensorboard
Do not use this template for for setup, installation, or configuration
issues. Instead, use the “installation problem” issue template:
https://github.com/tensorflow/tensorboard/issues/new?template=installation_problem.md
To report a problem with TensorBoard itself, please fill out the
remainder of this template.
Environment information (required)
Please run diagnose_tensorboard.py
(link below) in the same
environment from which you normally run TensorFlow/TensorBoard, and
paste the output here:
https://github.com/raw/tensorflow/tensorboard/master/tensorboard/tools/diagnose_tensorboard.py
Diagnostics
Diagnostics output
--- check: autoidentify
INFO: diagnose_tensorboard.py version 724b56cee52e7d8eb89bbeec1f0d5ce3e38c9682
--- check: general
INFO: sys.version_info: sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)
INFO: os.name: posix
INFO: os.uname(): posix.uname_result(sysname='Linux', nodename='b706f63f5739', release='4.15.0-117-generic', version='#118-Ubuntu SMP Fri Sep 4 20:02:41 UTC 2020', machine='x86_64')
INFO: sys.getwindowsversion(): N/A
--- check: package_management
INFO: has conda-meta: False
INFO: $VIRTUAL_ENV: None
--- check: installed_packages
INFO: installed: tensorboard==2.3.0
INFO: installed: tensorflow-gpu==2.3.1
INFO: installed: tensorflow-estimator==2.3.0
--- check: tensorboard_python_version
INFO: tensorboard.version.VERSION: '2.3.0'
--- check: tensorflow_python_version
2020-10-30 06:55:52.304929: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
INFO: tensorflow.__version__: '2.3.1'
INFO: tensorflow.__git_version__: 'v2.3.0-54-gfcc4b966f1'
--- check: tensorboard_binary_path
INFO: which tensorboard: b'/usr/local/bin/tensorboard\n'
--- check: addrinfos
socket.has_ipv6 = True
socket.AF_UNSPEC = <AddressFamily.AF_UNSPEC: 0>
socket.SOCK_STREAM = <SocketKind.SOCK_STREAM: 1>
socket.AI_ADDRCONFIG = <AddressInfo.AI_ADDRCONFIG: 32>
socket.AI_PASSIVE = <AddressInfo.AI_PASSIVE: 1>
Loopback flags: <AddressInfo.AI_ADDRCONFIG: 32>
Loopback infos: [(<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('127.0.0.1', 0))]
Wildcard flags: <AddressInfo.AI_PASSIVE: 1>
Wildcard infos: [(<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('0.0.0.0', 0)), (<AddressFamily.AF_INET6: 10>, <SocketKind.SOCK_STREAM: 1>, 6, '', ('::', 0, 0, 0))]
--- check: readable_fqdn
INFO: socket.getfqdn(): 'b706f63f5739'
--- check: stat_tensorboardinfo
INFO: directory: /tmp/.tensorboard-info
INFO: .tensorboard-info directory does not exist
--- check: source_trees_without_genfiles
INFO: tensorboard_roots (1): ['/usr/local/lib/python3.6/dist-packages']; bad_roots (0): []
--- check: full_pip_freeze
INFO: pip freeze --all:
absl-py==0.10.0
astunparse==1.6.3
cachetools==4.1.1
certifi==2020.6.20
chardet==3.0.4
gast==0.3.3
google-auth==1.22.1
google-auth-oauthlib==0.4.1
google-pasta==0.2.0
grpcio==1.33.1
gviz-api==1.9.0
h5py==2.10.0
idna==2.10
importlib-metadata==2.0.0
joblib==0.17.0
Keras-Preprocessing==1.1.2
Markdown==3.3.3
mpi4py==3.0.3
numpy==1.18.5
nvtx-plugins==0.1.8
oauthlib==3.1.0
opt-einsum==3.3.0
ortools==8.0.8283
pandas==1.1.3
pip==20.2.4
protobuf==3.13.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
python-dateutil==2.8.1
pytz==2020.1
requests==2.24.0
requests-oauthlib==1.3.0
rsa==4.6
scikit-learn==0.23.2
scipy==1.5.3
setuptools==50.3.2
six==1.15.0
sklearn==0.0
tensorboard==2.3.0
tensorboard-plugin-profile==2.3.0
tensorboard-plugin-wit==1.7.0
tensorflow-estimator==2.3.0
tensorflow-gpu==2.3.1
termcolor==1.1.0
threadpoolctl==2.1.0
urllib3==1.25.11
Werkzeug==1.0.1
wheel==0.30.0
wrapt==1.12.1
zipp==3.4.0
Next steps
No action items identified. Please copy ALL of the above output,
including the lines containing only backticks, into your GitHub issue
or comment. Be sure to redact any sensitive information.
For browser-related issues, please additionally specify:
- Browser type and version (e.g., Chrome 64.0.3282.140):
- Screenshot, if it’s a visual issue:
Issue description
I build a model using TF 2.3, and use
with tf.profiler.experimental.Profile("./logdir"):
for step, datas in enumerate(dataset):
# some train steps
if step >= 50:
break
But when I open the profiler: trace_viwer, it only have one step information rather than 50 steps.