Skip to content

virtualharsh/Medi-Stack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🧠 Medi-Sense

A unified health diagnostic platform that integrates four powerful machine learning models—Detect Sepsis, Diabetes, Stress, and Brain Tumor—all in one place. Medi-Sense aims to assist users in understanding potential health risks through AI-driven predictions.


🗂️ Project Structure

medi-sense/

  ├── client/
  ├── server/
  ├── server_python/
  └── README.md


🚀 Features

  • ✅ Brain Tumor Detection via MRI Images (CNN)
  • ✅ Stress Level Detection using Mental Health Questionnaire
  • ✅ Diabetes Risk Prediction using Health Data
  • ✅ Sepsis Prediction using Clinical Measurements
  • 🧩 Easy-to-use unified interface
  • 🌐 Fully responsive web application
  • 🔗 Node.js + Flask hybrid backend

🛠️ Tech Stack

Frontend (📁 client)

  • React.js
  • Tailwind CSS
  • Axios for API calls

Backend (📁 server)

  • Node.js
  • Express.js
  • JWT Auth (if implemented)
  • MongoDB

ML Model APIs (📁 server_python)

  • Python 3.x
  • Flask
  • Scikit-learn / TensorFlow
  • Trained models serialized with joblib or pickle

📦 Installation

git clone https://github.com/yourusername/medi-sense.git

cd medi-sense

📦Install client dependencies

cd client
npm install

📦Install Server dependencies

cd client
npm install

📦Setup server_python

Create /PKL folder in server_python

Download models from below link and place them in /PKL/ folder https://drive.google.com/drive/folders/1TDX3nRaRHqU9FS4byL-J79DBQxgwv_US?usp=drive_link

> pip install requirement.txt

Execute client, server and python_server

client

> cd client
> npm run dev

server

> cd server
> npm test

server_python

> cd server_python
> python app.py

📸 Screenshots

🏠 Login/Signup Page

Landing Page - Dark
Landing Page - Light

🔐 Dashboard

Signup - Light

🏠 Models

Home - Dark
Home - Light
Home - Light

Made with ❣️ by

Harsh
Jay
Krish
Nisheet

About

A hackathon project that integrate various medi-care models into a single website

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published