Skip to content

[Bug]:Structured outputs inference often took a very long time,and eventually causing a timeout and vLLM engine crushing. #10081

@hpx502766238

Description

@hpx502766238

Your current environment

The output of `python collect_env.py`
Collecting environment information...
WARNING 11-06 22:45:40 cuda.py:22] You are using a deprecated `pynvml` package. Please install `nvidia-ml-py` instead, and make sure to uninstall `pynvml`. When both of them are installed, `pynvml` will take precedence and cause errors. See https://pypi.org/project/pynvml for more information.
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: Tesla V100-PCIE-32GB
GPU 1: Tesla V100-PCIE-32GB

Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
架构:                                x86_64
CPU 运行模式:                        32-bit, 64-bit
Address sizes:                        46 bits physical, 48 bits virtual
字节序:                              Little Endian
CPU:                                  16
在线 CPU 列表:                       0-15
厂商 ID:                             GenuineIntel
型号名称:                            Intel Xeon Processor (Skylake, IBRS)
CPU 系列:                            6
型号:                                85
每个核的线程数:                      2
每个座的核数:                        1
座:                                  8
步进:                                4
BogoMIPS:                            4589.20
标记:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke md_clear
超管理器厂商:                        KVM
虚拟化类型:                          完全
L1d 缓存:                            512 KiB (16 instances)
L1i 缓存:                            512 KiB (16 instances)
L2 缓存:                             32 MiB (8 instances)
L3 缓存:                             128 MiB (8 instances)
NUMA 节点:                           1
NUMA 节点0 CPU:                      0-15
Vulnerability Gather data sampling:   Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:          KVM: Mitigation: VMX unsupported
Vulnerability L1tf:                   Mitigation; PTE Inversion
Vulnerability Mds:                    Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:               Mitigation; PTI
Vulnerability Mmio stale data:        Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; IBRS
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Mitigation; Clear CPU buffers; SMT Host state unknown

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.77
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pynvml==11.5.3
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.2
[pip3] triton==3.0.0
[conda] No relevant packages
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.1.dev238+ge2c6e0a82
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0	GPU1	CPU Affinity	NUMA Affinity	GPU NUMA ID�[0m
GPU0	 X 	PHB	0-15	0		N/A
GPU1	PHB	 X 	0-15	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

Model Input Dumps

No response

🐛 Describe the bug

Structured output inference can take a very long time, even with just a single request, ultimately leading to timeouts or crashes. During inference, GPU KV cache usage gradually increases to 100%, while the average generation throughput drops from 30 tokens/s to 20 tokens/s, eventually causing a timeout and necessitating the use of the CPU KV cache. Even after one hour, there is no response to the structured output request sent earlier. Subsequently, I sent additional requests, including both normal and structured ones; the normal requests were responded to, albeit slowly, while the structured requests received no response. Over several more hours, an increasing number of new requests became pending and sequences were swapped, which eventually led to the vLLM engine crashing.

However, everything operates smoothly when only normal chat completion requests are sent, achieving an average generation throughput of 100 tokens/s or higher on dual Tesla V100 GPUs. The test model used was Qwen2-32B-GPTQ-Int8.

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    Projects

    Status

    Done

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions