-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.31.0
Libc version: glibc-2.35
Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.14.0-284.11.1.el9_2.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: Tesla V100-PCIE-32GB
GPU 1: Tesla V100-PCIE-32GB
Nvidia driver version: 535.161.08
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
Stepping: 4
BogoMIPS: 4600.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp_epp pku ospke md_clear flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 768 KiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 24 MiB (24 instances)
L3 cache: 33 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-11,24-35
NUMA node1 CPU(s): 12-23,36-47
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed: Mitigation; IBRS
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.46.3
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A (dev)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 NIC0 NIC1 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X SYS NODE NODE 0-11,24-35 0 N/A
GPU1 SYS X SYS SYS 12-23,36-47 1 N/A
NIC0 NODE SYS X NODE
NIC1 NODE SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NVIDIA_VISIBLE_DEVICES=GPU-e8f05969-70f0-a9d7-f54b-9db6b9b23080,GPU-41054c92-020c-6c84-0791-cca59e73e4f6
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.17.1-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
NVIDIA_CUDA_END_OF_LIFE=1
CUDA_VERSION=12.1.0
NVIDIA_DISABLE_REQUIRE=true
LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
CUDA_MODULE_LOADING=LAZY
Model Input Dumps
No response
🐛 Describe the bug
At first, I am serving Llama-3.2-11B-Vision-Instruct on my 2 V100/32G GPU with the following instruction.
python3 -m vllm.entrypoints.openai.api_server --model /dfs/share-groups/foundationmodels/multimodal_data/models/Llama-3.2-11B-Vision-Instruct --served-model-name Llama-3-2-11B-Instruct --tensor-parallel-size 2 --trust-remote-code --port 8001 --enforce-eager --disable-custom-all-reduce --enable-auto-tool-choice --tool-call-parser llama3_json --max_num_seqs 16 --dtype=half --max-model-len 10240
After starting the server, I send inference requests via requests. Everything works fine if I don't add a system prompt to the messages list, but if I do add one, I get the following error: jinja2.exceptions.TemplateError: Prompting with images is incompatible with system messages. Am I doing something wrong, or is this a current bug?
The following is the detailed information of the error message:
The following is the client script:
import base64
import json
import requests
def chat_with_image():
# Target URL and header configuration
URL = "http://172.18.77.98:8001/v1/chat/completions"
HEADERS = {
"Content-Type": "application/json",
"Accept": "application/json"
}
# Initialize messages list to store conversation history
messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
while True:
# Get user input for image path and question
image_path = input("Enter the path to your image (or type 'exit' to quit): ")
if image_path.lower() == 'exit':
break
question = input("Enter your question about the image: ")
# Convert the image to Base64 encoding
with open(image_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
# Construct JSON data, including the converted Base64 encoding
data = {
"messages": messages + [
{
"role": "user",
"content": [
{
"type": "text",
"text": question
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
}
]
}
],
"temperature": 0,
# "stop": ["<|endoftext|>", "<|im_end|>"],
# "stop_token_ids": [151643, 151645],
"max_tokens": 4096,
"model": "Llama-3-2-11B-Instruct",
"stream": False
}
print(f"get data: {data}")
# Send the request
response = requests.post(URL, headers=HEADERS, data=json.dumps(data))
# Store the response in messages
if response.status_code == 200:
assistant_response = response.json()
# Extract the assistant content from the 'choices' list
assistant_content = assistant_response.get("choices", [{}])[0].get("message", {}).get("content", "")
messages.append({
"role": "user",
"content": question
})
messages.append({
"role": "assistant",
"content": assistant_content
})
# Print the assistant response
print(f"Assistant: {assistant_content}")
else:
print(f"Error: {response.status_code}")
print(response.json())
# Example usage
if __name__ == "__main__":
chat_with_image()
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.